Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática"

Transcripción

1 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos inclusive. Cada una de las restantes cifras es un número entre 0 y 9, ambos inclusive. Cuántos números de teléfono distintos pueden formarse con estas condiciones? Para la primera cifra tenemos 8 casos. Para la segunda y tercera juntas son RV 9,2 y las restantes serán RV 10,4. En consecuencia el número de teléfonos es = Una empresa produce cerraduras de combinación. Cada combinación consta de tres números enteros del 0 al 99, ambos inclusive. Por el proceso de construcción de las cerraduras cada número no puede aparecer más de una sola vez en la combinación de la cerradura. Cuántas cerraduras diferentes pueden construirse? Una posible combinación sería 1, 23, 87 que sería distinta de 23, 1, 87, por lo que importa el orden. Por otra parte nos dicen que cada número no puede aparecer más de una sola vez, por lo que no hay repetición. Se trata de V100, 3 = El consejo directivo de una empresa informática tiene 10 miembros. Se ha programado una próxima reunión de accionistas para aprobar una nueva lista de ejecutivos (elegidos entre los 10 miembros del consejo). Cuántas listas diferentes, formadas por un presidente, un vicepresidente, un secretario y un tesorero, pueden presentar el consejo a los accionistas para su aprobación?si tres miembros del consejo son ingenieros en informática cuántas de las anteriores listas tienen: a) un ingeniero propuesto para la presidencia? b) exactamente un ingeniero en la lista? c) al menos un ingeniero en la lista? Llamemos a los miembros 1,2,3,..., 10 Una lista sería 1,2,3,4 otra sería 4,5,3,1 donde el orden importa ya que el primero sería el presidente, el segundo el vicepresidente, el tercero el secretario y el cuarto el tesorero, es decir que la lista 1,2,3,4 no sería la misma que la 4,3,2,1 ya que el primer caso el presidente sería 1 y en el segundo sería 4. Obviamente no hay repetición. Así pues el número de listas es V 10,4 = a) Si tres miembros del consejo son ingenieros. En Cuántas listas hay un ingeniero propuesto para la presidencia? Fijamos el presidente (3 casos) y variamos a los restantes. Tendríamos entonces 3.V 9,3 = b) En cuantas listas hay exactamente un ingeniero.

2 Tenemos 3 ingenieros para 4 posiciones y los 7 miembros restantes los variamos de 3 en V 7,3 c) En cuantas listas hay por lo menos un ingeniero. Calculamos todas las que no tienen ningún ingeniero y las restamos del total, es decir V 10,4 V 7,4 4. Con las cifras 1, 2, 3, 4, 5 y 7 se forman números de cinco cifras que no tengan ninguna repetida.a) Cuántos números se pueden formar? b) Cuántos de ellos son múltiplos de 4 y cuántos son múltiplos de 2? a) Importa el orden y no hay repetición V 6, 5 = = 720 b) Son múltiplos de 4 los que acaban en 12, 24, 32, 44, 52, 72. El caso 44 no nos vale por haber repetición. Acaban en 12 V 4, 3 = = 24. Por tanto los múltiplos de 4 son 5.24=120. Como hay 720 casos, acaban en una cifra concreta de las 6, 720/6 = 120 y como para ser pares tienen que acabar en 2 o 4, el número de pares que hay es Un profesor del Departamento de Computación tiene siete libros de programación diferentes en una estantería. Tres de los libros son de FORTRAN y los otros cuatro de PASCAL. De cuántas formas puede ordenar el profesor estos libros si: a) no hay restricciones? b) los lenguajes se deben alternar? c) todos los libros de FORTRAN deben estar juntos? d) todos los libros de FORTRAN deben estar juntos y los libros de PASCAL también? a) Si constituyen siete libros diferentes, el resultado es P 7 = 7! b) Los lenguajes deben alternar, es decir P 1 F 1 P 3 F 2 P 2 F 3 P 4 y siempre deben estar colocados así variando solamente los subíndices. Por cada cuaterna de los de Pascal tengo P 3 = 3! ternas de fortran. Por tanto la solución es P 4.P 3 = 4!.3! c) Si los libros de Fortran deben estar juntos, puedo considerar un bloque a los tres permutados entre sí, es decir, por ejemplo: P 1 (FFF)P 2 P 3 P 4 El número de casos que tendríamos en esa situación sería P 5 = 5!, pero a su vez los elementos de FFF permutan entre sí P 3 veces, por lo que el resultado pedido será: P 5.P 3 = 5!.3!

3 d) Si los de Fortran deben estar juntos y los de Pascal también tenemos los dos casos FFFPPPP o PPPPFFF, es decir P 2, pero a su vez el bloque FFF presenta P 3 casos y el bloque PPPP presenta P 4 casos. El resultado final sería: P 2.P 3.P 4 = 2!.3!.4! 6. De cuántas formas se pueden colocar las letras de la palabras POLIINSATURADO de modo que se mantenga el orden en que aparecen las vocales? Método 1 Consideremos 14 cajas donde contener las 14 letras que componen esa palabra y las numeramos para identificarlas del 1 al 14. Como las vocales han de ir siempre en el orden O, I, I, A, U, A, O, para cada posición de las vocales lo que permutan son las consonantes, es decir P 7. Ahora solo nos falta ver cuantas posiciones posibles tengo para las vocales. Ahí intervienen las cajas. Asigno una caja a la vocal Una posible solución sería , es decir que la O estaría en la caja 1, la I en la 2 y en la 3, en la 4 habría una A en la 5 una U, en la 6 una A y en la 7 una O. Otra posible solución sería 1(13)8(11)623. Los ordenaría de menor a mayor y la O estaría en la caja 1, la caja 2 y 3 contendrían la I, la caja 6 contendría la A, la 8 sería para la U, la 11 para la A y la 13 para la O. Cuántas de estas disposiciones de las cajas podemos hacer? Como podemos observar el orden de las cajas no importa, es decir que el caso es el mismo que el ya que las vocales tienen que conservar el orden inicial. Se trata entonces de C 14, 7. La solución del ejercicio es P 7.C 14,7 Método 2 Otra forma de plantearlo es así: Puesto que las vocales tienen siempre que estar en el mismo lugar puedo denominarlas a todas por V, independientemente de cuales sean. Tendría algunos casos como: PVLVVNSVTVRVDV, PLVVVVRDTVVVNS, donde VVVVVVV siempre sería la secuencia OIIAUAO. Se ve fácilmente que se trata de permutaciones con repetición ya que importa el orden y existe repetición fija del elemento V, 7 veces y cada una de las restantes letras 1 vez. RP 14; 7,1,1,1,1,1,1,1 Obviamente el resultado, utilizando ambos métodos, conduce a la misma solución: 14!/7! 7. Una mano de bridge consta de 13 cartas del conjunto de 52 de la baraja francesa. a) Cuántas manos de bridge son posibles? b) De cuántas formas se le puede dar a una persona 6 picas y 5 corazones? La baraja francesa consta de 13 cartas por cada palo, siendo los palos: picas, corazones, tréboles y rombos. Y las 13 cartas de cada palo son el AS(1), 2, 3, 4, 5, 6, 7,

4 8, 9, 10, J, Q, K. Las tres últimas son el Jocker, Queen, King (el equivalente a la sota, caballo y rey de la baraja española). a) El número posibles de manos es obviamente C 52,13 pues el orden en que estén dadas las cartas no influye en la mano y no puede haber repetición por no haber cartas repetidas. b) En una mano hay C 13, 6 de dar 6 picas, pues tengo 13 picas para dar 6. Analogamente para dar 5 corazones serían C 13, 5. Por último me quedan todavía dos cartas por dar para completar la mano, de donde puedo elegir cualquiera que no sea picas ni corazones, es decir 13 tréboles y 13 rombos, es decir C 26, 2 Por tanto el resultado final es C 13, 6. C 13, 5. C 26, 2 8. Cuántos números enteros entre 1000 y 9999 satisfacen que la suma de sus dígitos es exactamente 9? Cuántos de los números anteriores tienen todas sus cifras diferentes de cero? a) Es equivalente a cuántas soluciones enteras tiene la ecuación x + y + z + t = 9 con x 1 e y,z,t 0 Podemos utilizar la teoría de funciones generatrices (tema siguiente) y sería el coeficiente de x 9 en el producto (x+x 2 +x ) (1+x+x 2 +x ) 3, es decir el coeficiente de x 9 en x(1-x) -4 que es el coeficiente de x 8 en x(1-x) = C b) Es equivalente a cuántas soluciones enteras no negativas tiene la ecuación x + y + z + t = 9 con x,y,z y t enteros positivos Podemos utilizar la teoría de funciones generatrices (tema siguiente) y sería el coeficiente de x 9 en el producto (x+x 2 +x ) 4, es decir el coeficiente de x 9 en x 4 (1- x) -4 que es el coeficiente de x 5 en (1-x) -4 que es 8 = C En una heladería se sirven 7 tipos de helados. a) De cuántas formas distintas se pueden elegir 12 helados? b) De cuántas maneras se pueden elegir 12 helados si tiene que haber al menos uno de cada tipo? a) Método 1: Tengo 7 cajas que representan los tipos de helado. Se trata de distribuir 12 elementos helados en las cajas

5 Por ejemplo: ** *** **** *** significa que hay dos helados del tipo 1, 3 del tipo 2, ninguno del tipo 3, 4 del tipo 4, ninguno del tipo 5, 3 del tipo 6 y ninguno del tipo 7. En total tenemos RP 18; 12,6 = 18! / 12!.6! Método 2: Sería equivalente a averiguar cuántas soluciones enteras tiene la ecuación x + y + z + t + u + v + w = 12, con x,y,z,t,u,v,w no negativos. Podemos utilizar la teoría de funciones generatrices (tema siguiente) y sería el coeficiente de x 12 en el producto (1+x+x 2 +x ) 7, es decir el coeficiente de x 12 en (1-x) -7 que es b) Sería equivalente a averiguar cuántas soluciones enteras tiene la ecuación x + y + z + t + u + v + w = 12, con x,y,z,t,u,v,w 1. Podemos utilizar la teoría de funciones generatrices (tema siguiente) y sería el coeficiente de x 12 en el producto (x+x 2 +x ) 7, es decir el coeficiente de x 12 en x 7 (1- x) -7 que es el coeficiente de x 5 en (1-x) -7 que es Un estudiante debe responder siete de las diez preguntas de un examen. De cuántas formas puede hacer su elección si: a) no hay restricciones b) debe contestar las dos primeras preguntas c) debe responder al menos cuatro de las seis primeras preguntas a) Si las preguntas las numeramos del 1 al 10, una posible respuesta sería , que es la misma aunque alteremos el orden y no hay posible repetición. Se trata de combinaciones de 10 tomadas 7 a 7, es decir C 10,7 b) Si debe responder a las dos primeras, todos los casos comenzarán por y me quedan cinco preguntas por responder de las 8 restantes, por tanto serán C 8, 5 c) Si tiene que responder al menos cuatro de las seis primeras tenemos: Que responda exactamente 4 de las 6 primeras: C 6,4. C 4,3 Que responda exactamente 5 de las 6 primeras: C 6,5. C 4,2 Que responda exactamente 6 de las 6 primeras: C 6,6. C 4,1 El resultado por tanto será: 6C 6,4 + 6C 6,5 + 4

6 11. En un lote de 100 ordenadores se sabe que 10 de ellos contienen circuitos integrados defectuosos. Se selecciona una muestra de 7 ordenadores de forma aleatoria para realizar un chequeo. Cuántas muestras contienen: a) Tres circuitos defectuosos? b) Al menos un circuito defectuoso? a) De los 7, tres han debido ser elegidos de los 10 defectuosos, es decir C 10,3 y el resto serán 4 de los 90 en buen estado. Por tanto la solución es C 10,3. C 90,4 b) Al menos un circuito defectuoso, serían todos menos los que no tuvieran ningún circuito defectuoso, esto es: C 100,7 C 90,7 12. Si una partida de bridge es una partición ordenada de 52 cartas en cuatro grupos de 13 cartas cada uno. Cuántas partidas distintas de bridge se pueden jugar con una baraja? Al primer jugador podemos darle C 52, 13 manos, al segundo C 39,13, al tercero C 26,13 y al último 1. Solución: C 52, 13. C 39,13. C 26, De cuántas formas se puede distribuir un conjunto con 2n elementos en n conjuntos de 2 elementos? Pensemos que tenemos n cajas y en cada caja tenemos que poner dos de los 2n elementos dados. Para la primera caja tendríamos C 2n,2, para la segunda C 2n-2,2... y así sucesivamente hasta llegar a la última que nos quedarían 2 elementos que colocar para 2, es decir C 2,2 La solución será: C 2n,2. C 2n-2,2. C 2n-4,2. C 2n-6,2... C 4,2. C 2,2 = 2n! n (2!) Tambien se puede expresar como RP 2n; 2,2,...,2 (n veces)

7 14. De cuántas formas puede sacar un jugador cinco naipes de una baraja francesa y obtener un full (trío más pareja)?; y dobles parejas? Los trios posibles que puede sacar son por carta (es decir un trío de ases, un trío de jotas...etc) C 4,3 y como hay 13 cartas distintas en cuanto a numeración, en total serían 13.C 4,3. Por cada trío sacado podemos sacar (analogamente razonado) 13.C 4,2. El total de fulles es de 169.C 4,3.C 4,2.. En cuanto a las dobles parejas, razonando con en el caso anterior serían: 13.C 4,2. para la primera pareja. Para la segunda pareja serían las mismas. y para la carta que resta, serían 44 cartas ya que no pueden estar ninguna de las figuras que forman parte de las parejas anteriores (es decir que si las dobles parejas fueran de J y de Q, en la quinta carta no podría haber ninguna J (4) ni ninguna Q (4) ), es decir 8, quedándome 44 cartas. Solución 169.C 4,2.C 4, , Cuántas permutaciones de las letras de la palabra MISSISSIPPI no contienen dos o más letras I consecutivas? SOLUCION En total tenemos RP 11; 1,4,4,2 Tienen dos o más consecutivas aquellas que al menos contienen el bloque II manteniéndose siempre junto. Consideremos pues las dos I consecutivas como una sola I y tendremos 3 I tan solo. Por tanto todos los casos en los que van a aparecer la I consecutiva dos o tres veces es RP 10; 1,,4,3,2 La solución al problema será: RP 11; 1,4,4,2 - RP 10; 1,4,3,2 16 De cuántas maneras se pueden distribuir 12 libros distintos entre cuatro niños de modo que: a) cada niño reciba tres libros? b) los dos niños mayores reciban 4 libros y los dos menores dos cada uno? Método 1 (interpretado por combinaciones) a) El primer niño puede recibir C 12, 3, el segundo C 9, 3, el tercero C 6,3 y el último C 3,3 Por tanto la solución es C 12, 3,. C 9, 3. C 6,3.C 3,3 b) El mayor recibe 4 libros por tanto pueden distribuirsele C 12,4, al otro por tanto le quedan C 8,4, al tercero le quedan C 4,2 y al último C 2, 2 La solución es C 12,4. C 8,4. C 4,2.1 Método 2 (interpretado por permutaciones con repetición)

8 a) En este caso llamo A B C D a los niños. Supongamos que están así designados de mayor a menor edad: Fijo los libros del 1 al 12, y voy asignando los niños a los libros. Una posible asignación sería AAA BBB CCC DDD, otra sería ABBAABCDCDCD. De esta manera repartiría los 12 libros entre los 3 niños y las formas distintas de hacerlo serían RP 12; 3,3,3,3, b) En esta ocasión los repartos serían del tipo AAAABBBBCCDD, es decir que la repetición sería 4 para A, 4 para B y 2 para C y D. Por tanto todos los posibles repartos serían: RP 12 ; 4, 4,2,2 17. Determínese el coeficiente de x 9 y 3 en: a) (x + y) 12, b) (x + 2y) 12, c) (2x + 3y) i a) y x i 12 i 12 i b) (2y) x i = coef. x 12 i 12 i c) (3y) (2x) i 9 y 3 = coef. x 12 i 9 = coef. x 18. Determínese el coeficiente de de donde i=3. El coeficiente es 12 = y ; i = 3. El coeficiente es 2 = y 3 12 ; i=3. El coeficiente es 3 3 a) xyz 2 en (x + y + z) 4, b) xyz 2 en (2x y z) 4, c) xyz 2 en (x 2y + 3z 1 ) = a) + + = + i= 0 i coeficiente de xy en (x+y) 2 4 que es 2. Entonces el resultado final sería.2 = i 4 i (( x y) z) z ( x y). Necesariamente i=2. Faltaría por conocer el i i i b) ( x y z ) = y z x i= i + 4 ( 2 ( ) ( 1) ( ) (2 ) ; 4-i = 1; i=3, que en x obtiene 0 coeficiente 2 El problema se reduce a calcular el coeficiente de yz 2 para (y+z) 3 que es ( 1) 3 3 = i 4 i c) (( x 2y) + 3z ) = (3z ) ( x 2y) ; obviamente i = -2, de donde i=2 i= 0 i cuyo coeficiente en z -1 es 9. Falta averiguar el coeficiente de xy en (x-2y) 2 que es -4.

9 4 El resultado es 9.( 4) = Determínese la suma de todos los coeficientes de (x + y) a) = (1 + 1) = 2 = 1024 i= 0 i 20. Dado un número real x y un entero positivo n, muéstrese que n n n 1 n 2 n 2 n n n a) 1 = (1 + x) x(1 + x) + x (1 + x)... + ( 1) x 1 2 n n n n 1 n 2 n 2 b) 1 = (2 + x) ( x + 1)(2 + x) + ( x + 1) (2 + x)... + ( 1) 1 2 a) El desarrollo de la derecha es de ((1+x)-x) n = 1. b) El desarrollo de la derecha es Newton de ((2+x)-(1+x)) n = 1 n n n i n i ( 1) x (1 + x) i= 0 i n n n i n i ( 1) (1 + x) (2 + x) i= 0 i n n ( x + 1) n que es el binomio de Newton que es el binomio de n 21. Determina las formas diferentes en que se pueden elegir 20 monedas de cuatro grandes recipientes que contienen monedas de diferente denominación. Cada recipiente contiene un solo tipo de monedas. Método 1: Si denomino a los recipientes 1, 2, 3, 4. Una posible elección de monedas sería (es decir 6 del recipiente 1, 5 del recipiente 2, 7 del recipiente 3, 2 del recipiente 4) Es obvio que no importa el orden y hay repetición variable, 23 entonces estamos ante RC 4,20 = 20 Método 2: Equivale a saber cuantas soluciones enteras tiene la ecuación x + y + z + t = 20, donde x, y, z, t representan el número de monedas de cada tipo que tomo del recipiente 1, 2, 3 y 4 respectivamente:

10 Podemos utilizar la teoría de funciones generatrices (tema siguiente) y sería el coeficiente de x 20 en el producto (1+x+x 2 +x ) 4, es decir el coeficiente de x 20 en (1-x) -4 que es De cuántas formas se pueden colocar doce canicas del mismo tamaño en cinco recipientes distintos si: a) todas las canicas son negras? b) cada canica es de distinto color? a) Método 1 Utilizando las barras y asteriscos ** **** *** * ** RP 16;12,4 o asignando recipiente a las canicas RC 5,12 = 12 Método 2 Equivale a saber cuantas soluciones enteras tiene la ecuación x + y + z + t +w = 12, donde x, y, z, t representan el número de canicas que coloco en el recipiente 1, 2, 3, 4 y 5 respectivamente: Podemos utilizar la teoría de funciones generatrices (tema siguiente) y sería el coeficiente de x 12 en el producto (1+x+x 2 +x ) 5, es decir el coeficiente de x 12 en (1-x) -5 que es b) Si son todas de distinto color Razonando por asignación de recipiente tendríamos y fijando las canicas, que el caso no sería igual al caso ya que si suponemos que la primera canica es verde, en el primer caso estaría en el primer recipiente, mientras que en el segundo caso estaría en el 5º recipiente. Cómo se interpretaría el caso ? Que todas las canicas estarían en el primer recipiente Serían RV 5,12 = 5 12

11 23. Cuántas soluciones enteras no negativas tiene el sistema de ecuaciones x1 + x2 + x3 + x4 + x5 + x6 + x7 = 37; x1 + x2 + x3 = 6? Cuántas de estas soluciones verifican que x1, x2, x3 > 0? x1 + x2 + x3 + x4 + x5 + x6 + x7 = 37 tiene tantas soluciones como RP 43; 37,6 x1 + x2 + x3 = 6 tiene tantas soluciones como RP 8; 6,2 = 28. Por cada una de ellas hemos de resolver x4 + x5 + x6 + x7 = 31 que son RP 34,31,3 = 5984 En total = Cuántas verifican que x1, x2, x3 > 0? Coeficiente de grado x 6 de (x+x ) 3, que equivale al coeficiente de x 3 de 3 5 (1-x) -3 = 10 que es 3 3 La solución es = Cuántos números naturales de cuatro cifras significativas tienen sus cuatro dígitos diferentes en orden creciente (como 1347, y 3689) o en orden decreciente (como 6432 y9531)? Cuántos números naturales de cuatro cifras significativas tienen sus cuatro dígitos en orden no decreciente (como 3467, 2256 y 4777) o no creciente (como 7532, 9966, 5552)? SOLUCION Primero calculamos el número de los que tienen sus cuatro dígitos en orden creciente: 9 El 0 no puede aparecer por lo que el resultado pedido son C 9,4= 4 Analicemos este resultado. Como en las combinaciones no importa el orden en que se tomen los elementos, la combinación 3245 a efectos de nuestro problema es la 2345, es decir que si pensamos en cualquier combinación de los números del 1 al 9 tomados de 4 en 4, la podemos ordenar, obteniendo una serie con cuatro dígitos en orden creciente.

12 10 Sin embargo en el caso de que el orden sea decreciente el número es C 10,4 = 4 porque ahora el 0 puede formar parte de la serie, por ejemplo 0876, sería a efectos de nuestro problema el número 8760 que tiene todos sus dígitos en orden decreciente Así pues el resultado sería En orden no decreciente serían RC 9,4 = ya que ahora se permite la repetición y 4 13 En orden no creciente sería RC 10,4 =. Si los sumamos estaríamos repitiendo los 4 casos 0000, 1111, 2222, , por lo que hay que restar 10. El resultado sería: De cuántas formas se pueden seleccionar nueve bolas de una bolsa que contiene tres bolas rojas, tres verdes, tres azules y tres blancas? SOLUCION. Equivale a resolver la ecuación x + y + z + t = 9, con 0 x, y, z, t 3 Haciéndolo por funciones generatrices, sería el coeficiente de x 9 de (1+x+x 2 +x 3 ) 4 que coincide con el coeficiente de x 9 de (1-x 4 ) 4 (1-x) -4 Grado de (1-x 4 ) 4 Coeficiente Grado de (1-x) -4 Coeficiente = = El resultado es = =

13 26. Cuántos números de la seguridad social (secuencias de nueves dígitos) tienen al menos una vez cada uno de los dígitos 1, 3 y 7? No tienen el 1: RV 9,9 ; No tienen el 2 los mismos; No tienen el 3 los mismos: No tienen el 1 y el 2 RV 8,9. No tienen el 1 y el 3 los mismos y el 2 y el 3 los mismos. No tienen el 1, 2, y 3, RV 7,9 Por tanto tenemos: RV 10,9 3.RV 9, 9 + 3RV 8,9 RV 7,9 = Si se lanza un dado cinco veces, cuál es la probabilidad de que la suma de las cinco tiradas sea 20? Los casos favorables son las soluciones de la ecuación x + y + z + t + u = 20 con 1 x,y,z,t,u 6 Es el coeficiente de x 20 de la función (x+x x 6 ) 5 que es el grado x 15 de (1-x 6 ) 5 (1-x) -5 Grado de (1-x 6 ) 5 Coeficiente Grado de (1-x) -5 Coeficiente = Solucion: = = Como los casos posibles son 6 5 = 7776 La probabilidad pedida es 651/7776 = 0,0837 o del 8,37% 28. Determina el número de soluciones enteras para x1 + x2 + x3 + x4 = 19 donde 5 xi 10 para todo i, 1 i 4 SOLUCION. Equivalente a calcular el número de soluciones enteras para x1 + x2 + x3 + x4 = 39 donde 0 xi 15 para todo i, 1 i 4 Es el coeficiente de x 39 de (1+x+x x 15 ) 4 = (1-x 16 ) 4 (1-x) -4

14 Grado de (1-x 16 ) 4 Coeficiente Grado de (1-x) -4 Coeficiente = Solución es = =

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo.

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo. COMBINATORIA Introducción a la Combinatoria Recuento A menudo se presenta la necesidad de calcular el número de maneras distintas en que un suceso se presenta o puede ser realizado. Otras veces es importante

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

Apuntes de Matemática Discreta 4. Permutaciones y Variaciones

Apuntes de Matemática Discreta 4. Permutaciones y Variaciones Apuntes de Matemática Discreta 4. Permutaciones y Variaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 4 Permutaciones y Variaciones

Más detalles

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO. GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO

Más detalles

Elementos de Combinatoria

Elementos de Combinatoria Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte

Más detalles

Matemática Discreta I Tema 4 - Ejercicios resueltos

Matemática Discreta I Tema 4 - Ejercicios resueltos Matemática Discreta I Tema - Ejercicios resueltos Principios básicos Ejercicio 1 Cuántos números naturales existen menores que 10 6, cuyas cifras sean todas distintas? Solución Si n < 10 6, n tiene 6 o

Más detalles

ANALISIS COMBINATORIO.

ANALISIS COMBINATORIO. ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si un suceso puede tener lugar de m maneras distintas y cuando ocurre una de ellas se puede realizar otro suceso inmediatamente de n formas diferentes, ambos

Más detalles

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30 EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014 S 1 c 1 S 2 C 1 ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014 Desarrollo Temático de la Unidad Conceptos preliminares. Principio fundamental del análisis combinatorio.

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Un juego de cartas: Las siete y media

Un juego de cartas: Las siete y media Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla

Más detalles

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en 1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 280

13Soluciones a los ejercicios y problemas PÁGINA 280 Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

Problemas resueltos de combinatoria

Problemas resueltos de combinatoria Problemas resueltos de combinatoria 1) De cuántas formas distintas pueden sentarse seis personas en una fila de butacas? 2) De cuántas formas pueden mezclarse los siete colores del arco iris tomándolos

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

COMBINATORIA VARIACIONES. Las variaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que:

COMBINATORIA VARIACIONES. Las variaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que: COMBINATORIA La Combinatoria es la parte de las Matemáticas que estudia las diversas formas de realizar agrupaciones con los elementos de un conjunto, formándolas y calculando su número. Existen distintas

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

COMBINACIONES página 29 COMBINACIONES

COMBINACIONES página 29 COMBINACIONES página 29 DEFINICIÓN: Dados n elementos, el número de conjuntos que se pueden formar con ellos, tomados der en r, se llaman combinaciones. Por ejemplo, sean cuatro elementos formar con esos cuatro elementos

Más detalles

Pág. 1. Formar agrupaciones

Pág. 1. Formar agrupaciones Pág. 1 Formar agrupaciones 1 a) En una urna hay una bola blanca, una roja y una negra. Las extraemos de una en una y anotamos ordenadamente los resultados. Escribe todos los posibles resultados que podemos

Más detalles

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular:

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular: PARTE 1 FACTORIAL 2. 31 Calcular: PROBLEMAS PROPUESTOS i. 9!, (9)(8)(7)(6)(5)(4)(3)(2)(1) = 362880 ii. 10! (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3628800 iii. 11! (11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 39916800

Más detalles

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales 1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden

Más detalles

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito,

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito, 1 1.4 Cálculo de Probabilidades con Métodos de Conteo Considerere un espacio muestral finito, y defina, Luego, Ω = {ω 1,..., ω n }, P ({ω i }) = p i, i = 1,..., n P (A) = ω i A p i, A Ω Ω se dice equiprobable

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

IES Real Instituto de Jovellanos de Gijón Serie 8. Distribuciones de Probabilidad MATEMÁTICAS 1º B.I. N.M. - Serie 8: Distribuciones de Probabilidad

IES Real Instituto de Jovellanos de Gijón Serie 8. Distribuciones de Probabilidad MATEMÁTICAS 1º B.I. N.M. - Serie 8: Distribuciones de Probabilidad MATEMÁTICAS 1º B.I. N.M. - Serie 8: Distribuciones de Probabilidad 1 Una variable aleatoria X toma los valores 0, 3, 5, 6 y 10, con probabilidades 0 16; 0 25; 0 21; 0 12 y 0 26 respectivamente. a) Comprueba

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS 15 Y 16 1. De una urna con 7 bolas blancas y 14 negras extraemos una. Cuál es la probabilidad de

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

15 PARÁMETROS ESTADÍSTICOS

15 PARÁMETROS ESTADÍSTICOS EJERCICIOS PROPUESTOS 1.1 El número de libros leídos por los miembros de un círculo de lectores en un mes se resume en esta tabla. N. o de libros leídos x i N. o de personas f i 1 1 3 18 11 7 7 1 Halla

Más detalles

Cuantos números de tres cifras distintas se pueden formar con las nueve cifras significativas del sistema decimal?

Cuantos números de tres cifras distintas se pueden formar con las nueve cifras significativas del sistema decimal? COMBINATORIA La "Teoría Combinatoria" resuelve problemas que aparecen al estudiar y cuantificar las diferentes agrupaciones (ordenaciones, colecciones,...) que podemos formar con los elementos de un conjunto.

Más detalles

EJERCICIOS DE VARIACIONES

EJERCICIOS DE VARIACIONES EJERIIOS DE ARIAIONES. uántos resultados distintos pueden producirse al lanzar una moneda cuatro veces al aire. Influye orden y elementos, y estos se pueden repetir. m, n. R,. uántos números de cuatro

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

La partida suele ser a 1.000 puntos, aunque ambos jugadores pueden determinar una puntuación diferente de antemano.

La partida suele ser a 1.000 puntos, aunque ambos jugadores pueden determinar una puntuación diferente de antemano. La Belote es un juego que ha alcanzado una gran popularidad en Francia por ser relativamente sencillo y muy atractivo. Objetivo del juego Cada jugador anunciará las combinaciones que tenga en las cartas

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

COMBINATORIA. 1. Fundamentos de combinatoria En esta sección estudiaremos las técnicas básicas de recuento que son fundamentales en combinatoria.

COMBINATORIA. 1. Fundamentos de combinatoria En esta sección estudiaremos las técnicas básicas de recuento que son fundamentales en combinatoria. COMBINATORIA La combinatoria es una parte importante de matemática discreta que se utiliza en la resolución de problemas de enumeración y de recuento. 1. Fundamentos de combinatoria En esta sección estudiaremos

Más detalles

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES. ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes.

PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes. PROBABILIDAD Els problemes assenyalats amb un (*) se faran a classe de problemes. 1.- (*) En una carrera en la que participan diez caballos de cuántas maneras diferentes se pueden dar los cuatro primeros

Más detalles

Capítulo 4 Procesos con estructuras de repetición

Capítulo 4 Procesos con estructuras de repetición Estructura de contador Capítulo 4 Procesos con estructuras de repetición Esta es una operación que incrementa en una unidad el valor almacenado en la variable c, cada vez que el flujo del diagrama pasa

Más detalles

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 TEMA 11 CÁLCULO DE PROBABILIDADES 11.0 INTRODUCCIÓN 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Un suceso aleatorio

Más detalles

MATEMAGIA ENREDADORA.

MATEMAGIA ENREDADORA. Buscar relaciones algebraicas en enunciados lúdicos. Modelizar situaciones mágicas de forma matemática. Reconocer pautas de comportamiento entre números. 3º Ciclo - Papel y lápiz El primer ayudante de

Más detalles

PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2

PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2 PROBABILIDAD 1. Blanca y Alfredo escriben, al azar, una vocal cada uno en papeles distintos. Determine el espacio muestral asociado al experimento. Calcule la probabilidad de que no escriban la misma vocal.

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

Problemas Resueltos del Tema 1

Problemas Resueltos del Tema 1 Tema 1. Probabilidad. 1 Problemas Resueltos del Tema 1 1- Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.. El espacio muestral

Más detalles

ALGUNOS PRINCIPIOS Y ESTRATEGIAS EN LA RESOLUCIÓN DE PROBLEMAS

ALGUNOS PRINCIPIOS Y ESTRATEGIAS EN LA RESOLUCIÓN DE PROBLEMAS ALGUNOS PRINCIPIOS Y ESTRATEGIAS EN LA RESOLUCIÓN DE PROBLEMAS Enech García Martínez UCPEJV enech@cubaeduca.cu enechgm@gmail.com enechgm@ucpejv.rimed.cu La única manera de aprender a resolver problemas

Más detalles

14Soluciones a los ejercicios y problemas

14Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

Cuántas palabras diferentes puedo formar con las letras a y b (no deben tener significado las palabras)

Cuántas palabras diferentes puedo formar con las letras a y b (no deben tener significado las palabras) Combinatoria Sábado 16 de Abril del 2011 Principios de Conteo Francisco Javier Gutiérrez Gutiérrez Principio fundamental de conteo: Si una cierta tarea se puede realizar de m maneras diferentes y para

Más detalles

Tema 3. Concepto de Probabilidad

Tema 3. Concepto de Probabilidad Tema 3. Concepto de Probabilidad Presentación y Objetivos. El Cálculo de Probabilidades estudia el concepto de probabilidad como medida de incertidumbre. En situaciones donde se pueden obtener varios resultados

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

NÚMEROS REALES MÓDULO I

NÚMEROS REALES MÓDULO I MÓDULO I NÚMEROS REALES NUEVE planetas principales constituyen el sistema solar. Si los ordenamos de acuerdo a su distancia al Sol Mercurio es el que está más cerca (58 millones de Km ) Plutón el más lejano

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Tema 11 Probabilidad Matemáticas B 4º ESO 1

Tema 11 Probabilidad Matemáticas B 4º ESO 1 Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS ESTADÍSTICA I Relación de Ejercicios nº 4 PROBABILIDAD Curso 007-008 1) Describir el espacio muestral

Más detalles

BLACK JACK. BACCARAT (Light)

BLACK JACK. BACCARAT (Light) BLACK JACK La finalidad de este juego es tener una mano de mayor valor en puntos en total que el dealer, sin sobrepasar 21 puntos. Cada carta tiene su valor, las figuras valen 10 y el As toma el valor

Más detalles

COLOMO R e g l a m e n t o

COLOMO R e g l a m e n t o COLOMO Reglamento C O L O M O Rojo, Naranja, amarillo, azul, púrpura Todo el mundo conoce los colores del arco iris. Estos colores son las estrellas de todos los juegos incluidos en Colomo. En estas reglas

Más detalles

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. (1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

Problemas de Conteo. 1. Problemas

Problemas de Conteo. 1. Problemas Problemas de Conteo 1. Problemas 1. En un torneo de básquetbol compiten 16 equipos. En cada ronda los equipos se dividen en grupos de 4. En cada grupo cada equipo juega una vez contra cada uno de los equipos

Más detalles

Problemas de Probabilidad Soluciones

Problemas de Probabilidad Soluciones Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Práctico 4. Probabilidad

Práctico 4. Probabilidad Práctico 4. Probabilidad Problema Calcular la probabilidad que si se lanzan dos dados la suma de los resultados obtenidos sea inferior a 9. Problema 2 Las posibilidades de apostar a pleno en la ruleta

Más detalles

Curso Taller de Matemáticas Olímpicas. Principio Fundamental del Conteo

Curso Taller de Matemáticas Olímpicas. Principio Fundamental del Conteo Curso Taller de Matemáticas Olímpicas Principio Fundamental del Conteo La forma más sencilla y tradicional de contar cosas suele ser con los diagramas de árbol; al final, todo se reduce a sumas y multiplicaciones.

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

PÁGINA 261 PARA EMPEZAR

PÁGINA 261 PARA EMPEZAR 13 Soluciones a las actividades de cada epígrafe PÁGINA 261 Pág. 1 PARA EMPEZAR Un desafío interrumpido Uno de los problemas que el caballero de Meré le propuso a Pascal es el siguiente: Dos contendientes,

Más detalles

TEORÍA DE JUEGOS. 1 Definiciónes y Conceptos Básicos. 1.1 Definición: 1.2 Elementos de un juego. 1.3 Representación de un juego.

TEORÍA DE JUEGOS. 1 Definiciónes y Conceptos Básicos. 1.1 Definición: 1.2 Elementos de un juego. 1.3 Representación de un juego. TEORÍA DE JUEGOS 1 Definiciónes y Conceptos ásicos. 1.1 Definición: La teoría de juegos es una herramienta de análisis económico usada para estudiar problemas caracterizados por la interacción estratégica

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10. _ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Soluciones a las actividades de cada epígrafe

Soluciones a las actividades de cada epígrafe 0 Soluciones a las actividades de cada epígrafe Pág. PÁGIA 08 En este juego hay que conseguir que no queden emparejadas dos bolas del mismo color. Por ejemplo: GAA PIERDE GAA PIERDE PIERDE uál es la probabilidad

Más detalles

Hoja1!C4. Hoja1!$C$4. Fila

Hoja1!C4. Hoja1!$C$4. Fila CAPÍTULO 6......... Cálculo y funciones con Excel 2000 6.1.- Referencias De Celdas Como vimos con anterioridad en Excel 2000 se referencian las celdas por la fila y la columna en la que están. Además como

Más detalles
Sitemap