Clase 5: Variables Aleatorias y Distribuciones de Probabilidad


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clase 5: Variables Aleatorias y Distribuciones de Probabilidad"

Transcripción

1 Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

2 Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una descripción detallada de cada resultado posible cuando se prueban tres componentes electrónicos se puede escribir como {NNN,NND,NDN,DNN,NDD,DND,DDN,DDD} donde N denota no defectuoso y D defectuoso. Es natural estar interesado en el número de defectuosos que puedan ocurrir. De esta forma a cada punto del EM se le asignará un valor numérico de 0,1,2 o 3. Estos valores, por supuesto, son cantidades aleatorias determinadas por los resultados del experimento estadístico. Utilizaremos una letra mayúscula, digamos X, para denotar una variable aleatoria y su respectiva minúscula, x en este caso, para uno de sus valores. 2

3 En el Ejemplo 1, notamos que la variable aleatoria X toma el valor 2 para los elementos del subconjunto del EM. Variables Aleatorias E={DDN,DND,NDD} Ejemplo 2: Se sacan dos bolas de manera sucesiva sin reemplazo de una urna que contiene cuatro bolas rojas y tres negras. Los posibles resultados y los valores y de la variable aleatoria Y, donde Y es el número de bolas rojas, son: EM y RR 2 RN 1 NR 1 NN 0 3

4 Variables Aleatorias Ejemplo 3: El empleado de una almacén regresa tres cascos de seguridad al azar a tres empleados de un taller siderúrgico que ya los habían probado. Si Valdivia, Jara y Boseyur, en ese orden, reciben uno de los tres cascos, listar los puntos muestrales para los posibles órdenes de regreso de los cascos y encontrar el valor de m de la variable aleatoria M que representa el número de asociaciones correctas. Si V, J y B representan los cascos de Valdivia, Jara y Boseyur, respectivamente, entonces los posibles arreglos en el cual se pueden regresar los cascos y el número de asociaciones correctas son EM m VJB 3 VBJ 1 JVB 1 JBV 0 BVJ 0 BJV 1 4

5 Variables Aleatorias En cada uno de los EM anteriores contienen un número finito de elementos. Ejemplo 4: Cuando se lanza un dado hasta que ocurre un cinco, obtenemos un EM con una secuencia interminable de elementos {C,NC,NNC,NNNC,NNNNC, } donde C y N representan, respectivamente, la ocurrencia y no ocurrencia de un 5. Pero incluso, en este experimento el número de elementos puede ser igual a todos los números enteros de modo que hay primer elemento, un segundo, un tercero y así sucesivamente, y en este sentido se pueden contar. Si un EM contiene un número finito de posibilidades o una serie interminable con tantos elementos como números enteros existen, se llama espacio muestral discreto (EMD). Los resultados de algunos experimentos estadísticos no pueden ser ni finitos ni contables. 5

6 Variables Aleatorias Ejemplo 5: Cuando se lleva a cabo una investigación para medir la distancia que recorre cierta marca de automóvil en una ruta de prueba preestablecida con 5 litros de gasolina. Supongamos que la distancia es una variable que se mide con algún grado de precisión, entonces claramente tenemos un número infinito de posibles distancias en el EM que no se puede igualar a todos los números enteros. Ejemplo 6: Si se registrara el tiempo requerido para ser atendido después de esperar en una fila (cola) en un banco. Una vez más los posibles intervalos de tiempo que forman nuestro EM son infinitos en número e incontables. Si un EM contiene un número infinito de posibilidades igual al número de puntos en un segmento de recta, se llama espacio muestral continuo (EMC). 6

7 Variables Aleatorias Una variable aleatoria se llama variable aleatoria discreta (v.a.d.) si se puede contar su conjunto de resultados posibles. Cuando una variable aleatoria puede tomar valores en una escala continua, se le denomina variable aleatoria continua (v.a.c.). Muchas veces los posibles valores de una v.a.c. son precisamente los mismos valores que contiene el EMC. Tal como ocurre en los Ejemplos 5 y 6. En la mayor parte de los problemas prácticos, las v.a.c. representan datos medidos, como son los posibles pesos, alturas, temperaturas o períodos de vida, mientras que las v.a.d. representan datos contados, como en los Ejemplos 1, 2, 3 y 4. Con frecuencia es conveniente representar todas las probabilidades de una v.a. X mediante una fórmula. Tal fórmula necesariamente sería una función de los valores numéricos x que denotaremos con f(x), g(x), r(x) y así sucesivamente. Por lo tanto, escribimos f(x)=p(x=x), es decir, f(3)=p(x=3). 7

8 Distribuciones de Probabilidad El conjunto de pares ordenados (x,f(x)) se llama función de probabilidad o distribución de probabilidad de la v.a.d. X. El conjunto de pares ordenados (x,f(x)) es una función de probabilidad, función de masa de probabilidad o distribución de probabilidad de la v.a.d. X, si para cada resultado posible x, Ejemplo 7: Un embarque de ocho notebook similares para una tienda contiene tres que están defectuosos. Si una Escuela hace una compra al azar de dos de estos notebook. Calcular la distribución de probabilidad para el número de defectuosos. 8

9 Distribuciones de Probabilidad Sea X una v.a. cuyos valores x son los números posibles de notebook defectuosos que compra la Escuela. Entonces x puede ser 0,1 o 2, tal que: Por lo tanto, la distribución de probabilidad de X es: x f(x) 10/28 15/28 3/28 9

10 Distribuciones de Probabilidad Hay muchos problemas donde queremos calcular la probabilidad de que el valor observado de una v.a. X sea menor o igual que algún número real x. La distribución acumulada F(x) de una v.a.d. X con distribución de probabilidad f(x) es Para la v.a. M, el número de asociaciones correctas en el Ejemplo 3, tenemos: 10

11 Distribuciones de Probabilidad La distribución acumulada de M es: Notar que la distribución acumulada se define no sólo para los valores que toma la v.a. dada sino para todos los números reales. 11

12 Distribuciones Continuas de Probabilidad Una v.a.c. tiene una probabilidad cero de tomar exactamente cualquiera de sus valores. Ejemplo 8: Consideremos una v.a. cuyos valores son las alturas de toda la gente mayor de 21 años de edad. Entre cualquiera dos valores, digamos y centímetros, o incluso y centímetros, hay un número infinito de alturas, una de las cuales es 164 centímetros. La probabilidad se seleccionar una persona al azar que mida exactamente 164 centímetros de altura y no sea una del conjunto infinitamente grande de alturas tan cercanas a 164 centímetros que humanamente no se pueda medir la diferencia es remota, por esto asignamos una probabilidad cero a tal evento. Sin embargo, si podemos referirnos a la probabilidad de seleccionar una persona que al menos mida 163 centímetros pero no más de 165 centímetros de estatura. En este caso, tratamos con un intervalo en lugar de un valor puntual de nuestra v.a. 12

13 Distribuciones Continuas de Probabilidad Trataremos el cálculo de probabilidades para varios intervalos de v.a.c. como P(a<X<b), P(W>c), etc. Notar que cuando X es una v.a.c. Es decir, no importa si incluimos o no un extremo del intervalo. Sin embargo, esto no es cierto cuando X es una v.a.d. La distribución de probabilidad de una v.a.c. no se puede representar de forma tabular, sin embargo se puede establecer como una fórmula. Al tratar con con v.a.c., f(x) por lo general se llama función de densidad de probabilidad, o simplemente función de densidad de X. Como X se define sobre un EMC, es posible que f(x) tenga un número finito de discontinuidades. Sin embargo, la mayor parte de las funciones de densidad que tienen aplicaciones prácticas en el análisis de datos estadísticos son continuas y sus gráficas pueden tomar varias formas. 13

14 Distribuciones Continuas de Probabilidad Una función de densidad de probabilidad se construye de modo que el área bajo su curva limitada por el eje x sea igual a 1 cuando se calcula en el rango de X para el que se define f(x). 14

15 Distribuciones Continuas de Probabilidad En la Figura anterior, la probabilidad de que X tome un valor entre a y b es igual al área sombreada bajo la función de densidad entre las ordenadas en x=a y x=b, y del cálculo integral es dada por La función f(x) es una función de densidad de probabilidad para la v.a.c. X, definida en el conjunto de números reales, si 15

16 Distribuciones Continuas de Probabilidad Ejemplo 9: Supongamos que el error en la temperatura de reacción, en grados Celsius, para un experimento de laboratorio controlado es una v.a.c. X que tiene la función de densidad de probabilidad a) Verificar la condición 2 anterior. b) Calcular P(0 < X <1). La distribución acumulada F(x) de una v.a.c. X con función densidad f(x) es 16

17 Distribuciones Continuas de Probabilidad De lo anterior, se concluye inmediatamente, si existe la derivada. Ejemplo 10: Para la función densidad del Ejemplo 9, calcular F(x), y usarla para calcular P(0 < X <=1). Graficar F(x). Ejemplo 11: Si se lanzan 16 veces dos monedas y X es el número de caras que ocurre por lanzamiento, entonces los valores de X pueden ser 0, 1 o 2. Supongamos que en el experimento salen cero caras (cuatro veces), una cara (siete veces) y dos caras (cinco veces). El número promedio de caras por lanzamiento de las dos monedas es (0)(4)+(1)(7)+(2)(5) 16 17

18 Esperanza Matemática Este es un valor promedio y no es necesariamente un posible resultado del experimento. Por ejemplo, el ingreso mensual de un vendedor probablemente no es igual a alguno de sus cheques de pago mensual. Reestructurando el cálculo del número promedio del Ejemplo 11, tenemos que (0)(4/16)+(1)(7/16)+(2)(5/16)=1.06 Los números 4/16, 7/16 y 5/16 son las fracciones de los lanzamientos totales que tienen como resultado cero, una y dos caras, respectivamente. Estas fracciones también son las frecuencias relativas de los diferentes valores de X en nuestro experimento. Utilicemos este método de frecuencias relativas para calcular el número promedio de caras por lanzamiento que podríamos esperar en el largo plazo. 18

19 Esperanza Matemática Nos referiremos a este valor promedio como la media de la v.a. X o la media de la distribución de probabilidad de X y la denotamos por µ. También es común referirse a esta media como la esperanza matemática o el valor esperado de la v.a. X y denotarla como E(X). Ejemplo 12: Cuando se lanzan dos monedas honestas, los cuatro puntos muestrales son igualmente probables. Sea X la v.a. número de caras. Sabemos P(X=0)=1/4, P(X=1)=1/2 y P(X=2)=1/4. Por lo tanto µ=e(x)=(0)(1/4)+(1)(1/2)+(2)(1/4)=1 Este resultado significa que una persona que lance dos monedas una y otra vez, en promedio, obtendrá una cara por lanzamiento. 19

20 Esperanza Matemática Sea X una v.a. con distribución de probabilidad f(x). La media o valor esperado de X es si X es discreta, y si X es continua. Ejemplo 13: Un inspector de calidad muestrea un lote que contiene siete componentes; el lote contiene cuatro componentes buenos y tres defectuosos. El inspector toma una muestra de tres componentes. Calcular el valor esperado del número de componentes buenos en esta muestra. 20

21 Esperanza Matemática Ejemplo 14: Sea X la v.a. que denota la vida en horas de cierto dispositivo electrónico. La función densidad de probabilidad es Calcular la vida esperada de este tipo de dispositivo. Sea X una v.a. con distribución de probabilidad f(x). La media o valor esperado de una función de X, digamos g(x), es si X es discreta, y si X es continua. 21

22 Esperanza Matemática Ejemplo 15: Supongamos que el número de automóviles X que pasa por un lavado de autos entre las 16:00 y 17:00 horas en cualquier viernes soleado tiene la siguiente distribución de probabilidades: X P(X=x) 1/12 1/12 1/4 1/4 1/6 1/6 Sea g(x)=2x-1 la cantidad de dinero en dólares, que el administrador recibe. Calcular las ganancias esperadas. 22

23 Esperanza Matemática Ejemplo 16: Sea X una v.a. con función de densidad Calcular el valor esperado de g(x)=4x+3. La media o valor esperado de una v.a. X es de especial importancia en estadística, pues describe el lugar donde se centra la distribución de probabilidad. Sin embargo, por sí misma no da una descripción adecuada de la forma de la distribución. Necesitamos caracterizar la variabilidad en la distribución. La medida de variabilidad más importante de una v.a. X se obtiene al hacer g(x)=(x-µ) 2 en la definición anterior (página 21). Debido a su importancia se le denomina varianza de la v.a. X o varianza de la distribución de probabilidad de X y se denota por Var(X) o σ 2. 23

24 Varianza de una variable aleatoria Sea X una v.a. con distribución de probabilidad f(x) y media µ. La varianza de X es Si X es discreta, y Si X es continua. La raíz cuadrada positiva de la varianza, σ, se llama desviación estándar de X. Corolario. La varianza de una v.a. X es 24

25 Varianza de una variable aleatoria Ejemplo 17: Sea la v.a. X el número de partes defectuosas de una máquina cuando se muestrean tres parte de una línea de producción y se prueban. La siguiente es la distribución de probabilidades de X: x f(x) Calcular la Var(X) usando los dos métodos anteriores (página 24). Ejemplo 18: La demanda semanal de cierta marca de bebida, en miles de litros, de una cadena local de tiendas, es una v.a.c. X que tiene densidad de probabilidad Calcular la media y la varianza de X. 25

26 Medias y Varianzas de Combinaciones Lineales de v.a. Si a y b son constantes, entonces Al hacer a=0, vemos que E(b)=b. Al hacer b=0, vemos que E(aX)=aE(X). El valor esperado de la suma o diferencia de dos o más funciones de la v.a. X es la suma o diferencia de los valores esperados de las funciones. Es decir: Ejemplo 19: Sea X una v.a. con la distribución de probabilidad: x f(x) 1/3 1/2 0 1/6 Calcular el valor esperado de Y=(X-1) 2. 26

27 Medias y Varianzas de Combinaciones Lineales de v.a. Ejemplo 20: La demanda semanal de cierta bebida, en miles de litros, en una cadena de tiendas es una v.a.c. g(x)=x 2 +X-2, donde X tiene la función densidad Calcular el valor esperado para la demanda semanal de la bebida. Teorema de Chebyshev. La probabilidad de que cualquier v.a. X tome un valor dentro de k-desviaciones estándar de la media es al menos 1-1/k 2. Es decir, 27

28 Teorema de Chebyshev Ejemplo 21: Una v.a. X tiene media µ=8, varianza σ 2 =9 y distribución de probabilidad desconocida. Calcular: El Teorema de Chebyshev tiene validez para cualquier distribución de observaciones, y por esta razón, los resultados son débiles por lo general. Este teorema proporciona un límite inferior. Es decir, sabemos que la probabilidad de una v.a. que cae dentro de dos desviaciones estándar de la media no puede ser menor que 3/4, pero nunca sabemos cuánto podría ser en realidad. Solamente cuando conocemos la distribución de probabilidad podremos determinar probabilidades exactas. 28

Variables Aleatorias y Distribuciones de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Variables Aleatorias y Distribuciones de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Variables Aleatorias Distribuciones de Probabilidad UCR ECCI CI-5 Probabilidad Estadística Pro. M.Sc. Krscia Daviana Ramírez Benavides Variable Aleatoria Una variable aleatoria es una unción que asocia

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera:

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera: INTRODUCCIÓN AL VALOR ESPERADO Y VARIANZA (5 MINUTOS) Cuando nos hablan del promedio de que ocurra un evento, cómo sabemos con certeza qué tan cerca estamos de alcanzar ese promedio? Esta pregunta nos

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1 Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Inferencia Estadística

Inferencia Estadística EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito,

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito, 1 1.4 Cálculo de Probabilidades con Métodos de Conteo Considerere un espacio muestral finito, y defina, Luego, Ω = {ω 1,..., ω n }, P ({ω i }) = p i, i = 1,..., n P (A) = ω i A p i, A Ω Ω se dice equiprobable

Más detalles

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

Clase 8: Distribuciones Muestrales

Clase 8: Distribuciones Muestrales Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas

Más detalles

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S.

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S. Técnicas De Conteo Si en el experimento de lanzar la moneda no cargada, se lanzan 5 monedas y definimos el evento A: se obtienen 3 caras, cómo calcular la probabilidad del evento A?, si todos los resultados

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS 1.1 Variables aleatorias Considera el experimento aleatorio consistente en lanzar dos monedas. El espacio muestral de

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL. REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98

Más detalles

Actividad A ganar, a ganar!

Actividad A ganar, a ganar! Nivel: 2.º Medio Subsector: Matemática Unidad temática: Estadística y probabilidad Ficha 13: Actividad A ganar, a ganar! Cada vez que en un juego de azar se acumula el pozo de dinero para repartir, miles

Más detalles

Tema 3 Probabilidades

Tema 3 Probabilidades Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

Tests de hipótesis estadísticas

Tests de hipótesis estadísticas Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Suponga que, conversando con su cuate, surge la idea de hacer una apuesta simple. Cada uno escoge decir cara ó sello. Se lanza una moneda al aire, y si sale cara, quien dijo sello le paga a quien dijo

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Conteo con reemplazamiento Considerando ahora un experimento en que una bola, seleccionada de una caja con n bolas, se regresa a la misma caja. Si se hace un total de k selecciones

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

1.- CONCEPTO DE ESTADÍSTICA 2.- TABLA ESTADÍSTICA Y PARÁMETROS ESTADÍSTICOS

1.- CONCEPTO DE ESTADÍSTICA 2.- TABLA ESTADÍSTICA Y PARÁMETROS ESTADÍSTICOS TEMA 6.- ESTADÍSTICA 1.- CONCEPTO DE ESTADÍSTICA Considera el conjunto formado por todos los alumnos del instituto. Supongamos que queremos estudiar, por ejemplo, el color del pelo, la estatura ó el nº

Más detalles

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD www.siresistemas.com/clases Ing. Oscar Restrepo DISTRIBUCIONES DISCRETAS DE PROBABILIDAD 1. Debido a las elevadas tasas de interés, una empresa reporta que el 30% de sus cuentas por cobrar de otras empresas

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA N o 1: Estadística y Probabilidades Profesor: Hugo S. Salinas. Primer Semestre 2011 1. Señalar

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Población, muestra y variable estadística

Población, muestra y variable estadística Población, muestra y variable estadística La estadística es la parte de las Matemáticas que estudia cómo recopilar y resumir gran cantidad de información para extraer conclusiones. La población de un estudio

Más detalles

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D.

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D. UNIVERSIDAD DE PUERTO RICO FACULTAD DE ADMINISTRACION DE EMPRESAS INSTITUTO DE ESTADISTICA ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus, Ph.D. Presentación Este curso ofrece al estudiante, la posibilidad

Más detalles

Ejercicios distribuciones discretas probabilidad

Ejercicios distribuciones discretas probabilidad Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en 1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Y DISTRIBUCIONES DE PROBABILIDAD Plan Común de Ingeniería 1.

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Definiciones: 1- La probabilidad estudia la verosimilitud de que determinados sucesos o eventos ocurran o no, con respecto a otros sucesos o eventos

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado:

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado: PARTE - Matemáticas pendientes de 3º ESO 00- NOMBRE: 4º GRUPO:. Resuelve gráficamente los siguientes sistemas de ecuaciones e indica que tipo de sistema son: x x x 3 4. Indica, para cada representación

Más detalles

Elementos de Combinatoria

Elementos de Combinatoria Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte

Más detalles

Unidad 4: Variables aleatorias

Unidad 4: Variables aleatorias Unidad 4: Variables aleatorias Logro de la unidad 4 Al finalizar la unidad 4, el alumno aplica el concepto de variable aleatoria, valor esperado y probabilidad para la toma de decisiones en un trabajo

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la

Más detalles

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Conceptos Fundamentales Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Análisis de datos en física de partículas Experimento en física de partículas: Observación de n sucesos de un cierto tipo (colisiones

Más detalles

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

Clase 3: Introducción a las Probabilidades

Clase 3: Introducción a las Probabilidades Clase 3: Introducción a las Probabilidades Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Clase 7: Algunas Distribuciones Continuas de Probabilidad

Clase 7: Algunas Distribuciones Continuas de Probabilidad Clase 7: Algunas Distribuciones Continuas de Probabilidad Distribución Uniforme Continua Una de las distribuciones continuas más simples en Estadística es la Distribución Uniforme Continua. Esta se caracteriza

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 12 Distribución de una variable aleatoria Elaborado por la Profesora

Más detalles

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Aplicación: INFERENCIA ESTADÍSTICA EJERCICIOS RESUMEN Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Página1 DESCRIP Ejercicio 1 Los siguientes son los números de cambios

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación. Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

Conceptos Básicos de Probabilidad

Conceptos Básicos de Probabilidad Conceptos Básicos de Probabilidad Debido a que el proceso de obtener toda la información relevante a una población particular es difícil y en muchos casos imposible de obtener, se utiliza una muestra para

Más detalles

CARTAS DE CONTROL. FeGoSa

CARTAS DE CONTROL. FeGoSa Las empresas en general, ante la apertura comercial han venido reaccionando ante los cambios y situaciones adversas, reaccionan por ejemplo ante: Disminución de ventas Cancelación de pedidos Deterioro

Más detalles

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería, Estadística Problemas de examenes: Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Similar a las distribuciones de frecuencia, una distribución de probabilidad discreta puede ser representada (descrita) tanto gráficamente como

Más detalles
Sitemap