LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6"

Transcripción

1 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas a 600 cada caja. Las máquinas condicionan la producción, de modo que no pueden salir al día más de 400 cajas de copas sencillas, ni más de 300 cajas de copas talladas. Por razones de stock no se pueden fabricar más de 500 cajas en total. Suponiendo que siempre se producen cajas completas y que es vendida toda la producción: (a) Cuántas cajas se pueden producir de cada clase?. Plantea el problema y representa gráficamente su conjunto de soluciones. (b) Cuántas cajas de cada clase convendrá producir para obtener máximos ingresos?. (c) A cuánto ascenderán dichos ingresos?. Un panadero elabora dos tipos de pan, de 250 g y de 300 g, respectivamente. Obtiene un beneficio de 0.25 por cada pan de 250 gramos, y de 0.4 por cada pan de 300 gramos. Si dispone de 100 Kg de masa, y el número de panes pequeños debe ser, al menos, igual al de panes grandes. (a) Cuántos de cada tipo puede hacer?. Plantea el problema y representa gráficamente su conjunto de soluciones. (b) Cuántos de cada tipo debe hacer para obtener beneficio máximo?. (c) A cuánto ascenderá dicho beneficio?. María distribuye su tiempo entre discoteca y cine. Cada vez que va a la discoteca gasta por término medio 6, mientras que si va al cine su gasto es de 4. En cierto mes su presupuesto de ocio asciende a 120 y desea ir a la discoteca al menos tantas veces como al cine. (a) Cuántas veces puede ir a cada sitio?. Plantea el problema algebraicamente y dar su representación gráfica. (b) Puede ir 10 veces a cada uno de los sitios?. Gasta todo su presupuesto?. (c) Si decide ir a la discoteca solamente, Cuántas veces podrá hacerlo como máximo?. (d) Si María quiere maximizar el número total de veces que puede acudir a divertirse, determinar, gráficamente, cuántas veces irá a la discoteca y al cine. 004 En la confección de una dieta, generalmente, entran 2 compuestos A y B. El médico da las siguientes pautas a la farmacia: (A) Al menos ha de contener un gramo de cada compuesto. (B) Nunca puede haber más de 7 gramos del producto B. (C) El compuesto no puede contener más de 10 gramos de estos dos productos en total. (D) Del producto A tiene que haber, como máximo, 5 gramos más que del producto B. La farmacia, para obtener el máximo beneficio, le encarga a un empleado que dice saber mucho de Matemáticas que averigüe qué cantidad de cada uno de los productos ha de echar, teniendo en cuenta que tanto el gramo de producto A como el gramo de producto B dejan un beneficio de 10. El mencionado dependiente coge su calculadora gráfica, abre el armario y comprueba que la farmacia sólo dispone en estos momentos de 7 gramos del producto B. Piensa un poco, hace operaciones y da su resultado: Hay que echar 6 gramos de producto A y 4 gramos de producto B!. (a) Sabía realmente Matemáticas el empleado?. (b) A cuánto ascendería dicho beneficio?. 1

2 Abel Martín "Programación Lineal" Una empresa utiliza dos tipos de operarios para producir dos tipos de artículos. El artículo A, del que deben salir diariamente al menos 100 unidades, puede obtenerse a partir del operario X a razón de 20 unidades diarias, y del operario Y a razón de 16 unidades diarias. Las cifras correspondientes al artículo B son, respectivamente, 50 y 100, pero se requiere un mínimo de 800 unidades de B fabricadas por día. El sueldo de un operario X es de 2000, y el de un operario Y es de El estado, por otra parte, no acepta contrataciones que no incluyan un mínimo de dos operarios X y 4 operarios Y. En estas condiciones, y si se quiere cubrir la producción, cuántos operarios se deben contratar para que los sueldos de adquisición sean mínimos?. El profesor de Matemáticas quería ponerles hoy un problema complicado, donde tuviesen que utilizar la cabeza: Tenéis que calcular dos números positivos cuya suma no supere en ningún caso las 2 unidades y que verifiquen que la suma del doble de uno de ellos y el otro sea como mínimo 5. Entre todos ellos, tenéis que buscar a continuación cuál es el máximo valor que puede alcanzar la expresión 3x + 7y. Cuando los obtengáis os daré tantos miles de euros como valga el mayor Dijo el profesor mientras se reía, quizás porque pensaba que ningún alumno lo acertaría. Podrías ayudarnos a averiguar dichos números? Cuánto dinero nos tendrá que dar el "desprendido" profesor? Diego desea repartir su tiempo de vacaciones entre dos lugares (A y B). El día de estancia en A le cuesta 100 mientras que en B 200. Su presupuesto global para todas las vacaciones son 2000 y no desea pasar más de 10 días en A. (a) Cuántos días puede pasar en cada sitio?. Plantea algebraicamente el problema y representa gráficamente el conjunto de soluciones?. (b) Si desea disfrutar del mayor número de días de vacaciones posible, cuántos pasará en cada uno de los lugares?. Agotará el presupuesto?. Pablo dispone de 120 para gastar en libros y discos. A la tienda donde acude, el precio de los libros es de 4 y el de los discos es de 12. Suponiendo que desea comprar como mucho el doble número de libros que de discos, se pide: a) Cuántos libros y cuántos discos puede comprarse?. Plantear el problema y b) Contestar razonadamente si puede comprar 12 libros y 6 discos. En caso afirmativo, indicar si gasta todo su presupuesto. c) Puede adquirir 15 libros y 5 discos?; Cuánto dinero le sobra?. Razonar la respuesta. d) Si desea sacar la mayor cantidad de unidades posibles, cuántos libros y discos adquirirá? Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1.5 millones de PTAS y el modelo B en 2 millones. La oferta está limitada por las existencias, que son 20 coches del modelo A y 10 del modelo B, queriendo vender al menos tantas unidades del modelo A como del modelo B. Por otra parte, para cubrir los gastos de esta campaña, los ingresos obtenidos con ella deben ser al menos de 6 millones. (a) Cuántas unidades de cada modelo puede vender? Plantea el problema y representa su conjunto de soluciones. (b) Cuántos coches deberá vender de cada modelo para maximizar sus ingresos? Cuál es su importe?. Una fábrica de muebles produce camas y armarios. En el área de montaje se tarda media hora en armar una cama y 45 minutos en montar un armario. En el área de pintado y barnizado se invierte un tiempo de media hora en cada caso. En ambas plantas se trabaja como máximo 40 horas a la semana, pero se dispone de un tiempo impredecible para poner el sistema en funcionamiento y para dejar la maquinaria en condiciones al acabar la jornada de trabajo. Por otra parte, por razones de mercado, el número de camas no debe ser superior al número de armarios. 2 Matemáticas y TIC

3 Curso ON LINE "Tema 06" (a) Cuántas camas y armarios se pueden producir semanalmente? Plantear el problema y Se pueden producir semanalmente 19 camas y 30 armarios? Y 25 camas y 21 armarios? Y 10 camas y 20 armarios?. (b) Si el beneficio obtenido por la venta de cada cama es de 45 y por cada armario es de 210, determina el número de muebles de cada clase que se deben fabricar semanalmente para que los beneficios obtenidos sean máximos Un taller de bisutería produce sortijas sencillas que vende a 4.5 y sortijas adornadas a 6. Las máquinas condicionan la producción de modo que no pueden salir al día más de 400 sencillas, ni más de 400 adornadas, ni tampoco más de 500 en total. Suponiendo que es vendida toda la producción: (a) Cuántas sortijas de cada clase se pueden producir?. Plantear el problema y (b) Cuántas de cada clase producirán para obtener la máxima ganancia?. (c) A cuánto ascenderá dicha ganancia?. Una empresa familiar ha comprado una máquina preparada para fabricar figuras decorativas utilizando nuevos materiales reciclados. Estas figuras son de 2 tipos, unas más baratas que venden a 200 /unidad y otras con mayor número de complementos, que venden a 500 /unidad. Por razones de stock no se pueden fabricar más de 12 en total y por razones de mercado, ha de fabricar, como mínimo, tantas caras como baratas. Suponiendo que es vendida toda la producción: (a) Cuántas figuras de cada clase se pueden producir?. Plantear el problema y (b) Cuántas de cada clase se producirán para obtener máximos ingresos?. (c) A cuánto ascenderán dichos ingresos?. Una escuela prepara una excursión para 400 alumnos. La empresa de transporte tiene 8 autocares de 40 plazas y 10 de 50 plazas, pero sólo dispone de 9 conductores. El alquiler de un autocar grande cuesta 80 y el de uno pequeño, 60. (a) Cuántos autocares de cada tipo se pueden utilizar?. Plantear el problema y (b) Calcular cuántos autocares de cada tipo hay que utilizar para que la excursión resulte lo más económica posible para la escuela. Una fábrica de embalajes elabora dos series de productos, cartón y plástico. Para su confección se requieren dos máquinas, A y B. Cada serie de cartón necesita 2 horas de trabajo de la máquina A y 1.5 horas de trabajo de la máquina B. Cada serie de plástico, por su parte, 1.5 horas y 1 hora, respectivamente. Cada máquina está en funcionamiento, a lo sumo, 40 horas a la semana. Por cada serie del artículo de cartón se obtiene un beneficio de 500, mientras que por cada serie del artículo de plástico éste es de 750. (a) Cuántas series de cartón y cuántas de plástico pueden fabricarse semanalmente?. Plantear el problema y (b) Y cuántas deben fabricarse semanalmente para obtener un beneficio máximo?. Una persona decide invertir su dinero de dos formas distintas en un banco: Una cantidad a plazo fijo, con un rendimiento del 5.25%, y en bonos, cuyo rendimiento es del 9%. Existen unos topes legales que impiden invertir más de en bonos, aunque le obligan en el banco a una inversión mínima a plazo fijo de de. Si dispone de de, deseando colocar a plazo fijo, al menos, tanto dinero como en bonos. Cuánto debe invertir en cada modalidad para que el rendimiento obtenido sea el máximo?. 3

4 Abel Martín "Programación Lineal" Un agricultor dispone de 1200 para invertir en un invernadero de 70 m2, donde desea cultivar fresas de dos calidades, baja y alta. Cada m2 de cultivo de fresa de baja calidad le supone al agricultor un gasto de 30 y 6 días de trabajo, mientras que por cada m2 del cultivo de fresa de alta calidad le supone 40 y 3 días de trabajo. Si el agricultor puede trabajar los cultivos durante 180 días como máximo al año, (a) Qué superficie puede dedicar a cada tipo de explotación?. Plantear el problema y (b) Qué superficie debe dedicar a cada tipo de explotación para obtener un beneficio máximo, sabiendo que los beneficios que obtiene por cada m2 de fresa de baja calidad son de 300 y 150 por m2 si la fresa es de alta calidad?. Un pastelero artesanal elabora diariamente sólo dos tipos de tartas A y B. Como máximo puede hacer tres tartas de cada tipo pero, obligatoriamente, tiene que hacer como mínimo una de tipo B. Indica todas las posibilidades de fabricación si se quieren obtener unos beneficios de al menos 60 teniendo en cuenta que cada tarta A le reporta unas ganancias de 30 y cada tarta B 10. Una fábrica de coches y camiones dispone de tres talleres dedicados respectivamente a la fabricación de motores, a la fabricación de carrocerías y al montaje. En el taller de motores se tarda 1 hora en fabricar el motor de un coche y 2 horas en fabricar el de un camión. En el taller de carrocerías se tarda 6/5 de hora en fabricar una carrocería de coche y 8/5 de hora en fabricar una carrocería de camión. Finalmente, en el taller de montaje se invierte 5/4 de hora en montar un coche y 3/2 de hora en montar un camión. El beneficio obtenido es de 4000 por cada coche y 6000 por cada camión. Cada taller puede trabajar como máximo 200 horas al mes. Suponiendo que la fábrica puede vender toda la producción, cuántos coches y camiones ha de producir por mes para obtener el máximo beneficio?. Un granjero se dedica a la cría de pavos. La dieta de un animal debe contener al menos calorías y no más de 2 500; asimismo, debe contener por lo menos 5 unidades de hierro. Para componer la dieta el granjero puede comprar dos tipos de pienso (A y B), cuyos contenidos en calorías y hierro (por cada 100 gr.) se indican en la tabla siguiente: Fe (unidades) Calorías Pienso A Pienso B Si el precio del Kg de pienso A es de 1 y el del B es 2, (a) Qué cantidades puede utilizar de cada pienso? Plantear el problema y representar gráficamente su conjunto de soluciones. (b) Qué cantidad debe utilizar de cada pienso con el fin de que la alimentación de los pavos le resulte lo más barata posible. Cuál es su coste? (c) El contenido en hierro de la dieta es el mínimo exigido?; y el contenido en calorías es máximo?. Razonar las respuestas. 020 Un profesional tiene trabajo en dos ciudades A y B. Su domicilio dista de A 30 Km y 20 de B. se ha comprometido a trabajar al menos 5 días al mes en cada lugar. No quiere trabajar más de 22 días al mes y además en sus desplazamientos no desea hacer más de 1100 km al mes. En A cobra 120 diarias y en B 100. (a) Escribe las restricciones y dibuja la zona de posibles soluciones. (b) Entra dentro de las condiciones trabajar 17 días en A y 5 en B?. (c) Cuántos días deberá trabajar en cada sitio para obtener mayores ingresos?. La región factible de un problema de programación lineal es la intersección del primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: 021 x y x y x y + 1 ; + 1 ; (a) Dibuje dicha región y determine sus vértices. (b) Calcule el mínimo de la función objetivo F(x, y) = 4x + 5y en el recinto anterior. (c) Calcule el máximo de la función objetivo F(x, y) = 4x + 5y en el recinto anterior. PAU ANDALUC 4 Matemáticas y TIC

5 Curso ON LINE "Tema 06" Una fábrica de coches va a lanzar al mercado dos nuevos modelos (uno básico y otro de lujo). El coste de fabricación del modelo básico es de 1 millón de PTAS y el del modelo de lujo 1.5 disponiendo para esta operación de lanzamiento de un presupuesto de 60 millones. Para evitar riesgos, de momento se cree conveniente lanzar al menos tantos coches del modelo básico como del modelo de lujo y, en todo caso, no fabricar más de 45 coches del básico. (a) Cuántos coches puede fabricar de cada modelo? Plantear el problema y (b) Cuántos le interesa si su objetivo es maximizar el número total fabricado? Agota el presupuesto disponible? Un agricultor estima que el cuidado de cada m 2 plantado de lechugas requiere semanalmente 45 minutos, mientras que el de repollo exige 50. Dispone de una tierra de 40 m 2 de extensión que puede dedicar total o parcialmente al cultivo de ambas verduras, queriendo plantar al menos 3 m 2 más de repollo que de lechuga. El m 2 de lechuga le reporta un beneficio de 500 PTAS mientras que el de repollo 650, planificando obtener en conjunto al menos PTAS de beneficio. a) Qué extensión de terreno puede plantar con cada verdura? Plantea el problema y b) Cuánto le interesa plantar de cada una si su objetivo es que el tiempo semanal dedicado a su cuidado sea mínimo?. Cierta persona dispone de 10 millones de euros como máximo para repartir entre dos tipos de inversión (A y B). En la opción A desea invertir entre 2 y 7 millones. Además, quiere destinar a esa opción tanta cantidad de dinero como a la B. (a) Qué cantidades puede invertir en cada una de las opciones? Plantear el problema y (b) Sabiendo que el rendimiento de la inversión será del 9% en la opción A y del 12% en la B, qué cantidad debe invertir en cada una para optimizar el rendimiento global?; a cuánto ascenderá?. Una agencia de viajes realiza a 20 clientes las siguientes ofertas: un viaje a la ciudad A por 500 u otro a la ciudad B por 750 (cada cliente podrá elegir, si le interesa, sólo una de las dos ofertas). Por razones de programación, la agencia necesita reunir al menos 8 y no más de 12 clientes interesados en el viaje a B. (a) Cuántos viajes podrá programar la agencia a cada ciudad?. Plantear el problema y (b) Cuántos clientes deberán estar interesados en ir a cada sitio para que la agencia maximice sus ingresos?; a cuánto ascenderán éstos?. Una casa discográfica va a promocionar durante el próximo mes el último disco grabado por dos de los grupos más afamados bajo su sello. El precio de lanzamiento es 17.5 y 18, respectivamente, siendo editadas 1500 copias del disco más caro. Para cubrir los gastos de la campaña debe vender en total 500 discos o más y por razones de imagen le conviene vender al menos tantas copias del disco más caro como del más barato. (a) Cuántas copias de cada disco puede vender?. Plantea el problema y representa gráficamente su conjunto de soluciones. (b) Cuántas copias deberá vender de cada uno para maximizar sus ingresos Cuál será su importe?. En una granja dedicada a la cría de cerdos, la dieta alimenticia de los animales consiste en dos tipos de pienso, cuyo precio ( /kg) es 2 para el pienso A y 3 para el pienso B. Un animal debe consumir diariamente al menos 2 kg de pienso. Por otra parte, debido a su valor energético, es aconsejable que coma al menos medio kg de la variedad B. Además, el coste de la dieta no puede superar las 3 por día. a) Qué cantidades de cada tipo de pienso pueden ser utilizadas para componer la dieta?. Plantear el problema y representar gráficamente el conjunto de soluciones. b) Si se desea que la dieta resulte lo más barata posible, cuáles serán las cantidades adecuadas?; qué coste tiene esa dieta?. JUNIO 1995 SEPT 1995 JUNIO 1996 SEPT 1996 junio 1997 Sept

6 Abel Martín "Programación Lineal" Una confitería es famosa por sus dos especialidades en tartas: la tarta Imperial y la tarta de Lima. La tarta Imperial requiere para su elaboración medio kilo de azúcar y 8 huevos y tiene un precio de venta de 12. La tarta de Lima necesita 1 kilo de azúcar y 8 huevos y tiene un precio de venta de 15. Debido a una mala previsión se encuentran con la imposibilidad de realizar pedidos de huevos y azúcar, y elaborados ya todos los demás productos que ofertan, les quedan en el almacén 10 kilos de azúcar y 120 huevos para la elaboración de las citadas tartas. (a) Qué combinaciones de especialidades pueden hacer?. Plantear el problema y representar gráficamente el conjunto de soluciones. (b) Cuántas unidades de cada especialidad han de producirse para obtener el mayor ingreso por ventas? A cuánto asciende dicho ingreso? Los responsables de un videoclub han de realizar el pedido de películas de estreno y novedades a sus proveedores. El coste de cada película de estreno es de 7.6 y el de cada novedad 3.7. Se desea un coste total que no supere los 945. Por otra parte, el proveedor les exige que los estrenos sean al menos la mitad que las novedades, y que las novedades más la mitad de los estrenos no sea inferior a las 100 unidades. (a) De cuántas unidades de cada tipo puede consistir el pedido?. Plantear el problema y representar gráficamente el conjunto de soluciones. (b) Si se desea que el total de unidades pedidas sea mínimo, de cuántas unidades de cada tipo ha de constar el pedido? cuál es entonces el coste del pedido? Un grupo musical va a lanzar su nuevo trabajo al mercado. La casa discográfica considera necesario realizar una campaña intensiva de publicidad, combinando 2 posibilidades: anuncios en televisión, con un coste estimado de 1 millón de PTAS por anuncio, y cuñas radiofónicas, con un coste estimado de PTAS por cuña. No obstante, no pueden gastar más de 100 millones de PTAS para dicha campaña, a lo largo de la cual se tienen que emitir al menos 50 y no más de 100 cuñas. Un estudio de mercado cifra en el número de copias que se venderán por anuncio de televisión, y en copias por cuña radiofónica emitida. a) De cuántos anuncios y cuñas radiofónicas podrá constar esta campaña? Plantear el problema y representar gráficamente el conjunto de soluciones. b) Qué combinación de ambos se debería realizar para vender el mayor número de copias posible? se llegan a gastar los 100 millones de PTAS?. Por motivos de ampliación de plantilla, una empresa de servicios de traducción quiere contratar, a lo sumo, 50 nuevos traductores. El salario que ha de pagar a cada traductor de una lengua es de 2000, y de 3000 a los que son de más de una lengua. Como poco, y por motivos de demanda, dicha empresa tiene que contratar a la fuerza a un traductor de más de una lengua. La política de selección de personal de la compañía obliga también a contratar al menos tantos traductores de una lengua como de más de una. Sabiendo que el objetivo fijado de beneficios totales es, como mínimo, de , y que los beneficios que aportan los traductores de una lengua son de 4000 /traductor, y de 8000 /traductor los de más de una lengua: (a) Cuántos traductores de cada tipo puede contratar?. Plantea el problema y representa gráficamente el conjunto de soluciones. (b) Cuántos contratará para minimizar el gasto en salarios? qué beneficios totales tendrá la empresa en este caso? Una fábrica de muebles produce dos líneas de muebles, "clásico" (C) y "funcional" (F). Para su fabricación, los muebles requieren tiempo de proceso de construcción y pintura. El mueble clásico precisa una unidad de tiempo de construcción y tres de pintura, mientras que el funcional requiere dos unidades de tiempo de construcción y una de pintura. La situación actual de la empresa no permite utilizar más de diez unidades de tiempo de construcción y quince de pintura. (a) Plantear el problema y representar gráficamente el conjunto de soluciones. (b) Qué combinaciones de muebles puede fabricar?. (c) Si el beneficio empresarial es función del número de unidades fabricadas de acuerdo con la relación Bº= 3C + 2F, cuántas unidades de cada línea deben fabricarse para maximizar el beneficio? cuál es el beneficio máximo?. Junio 1998 Sept 1998 JUNIO 1999 Sept 1999 JUNIO Matemáticas y TIC

PROGRAMACIÓN LINEAL Junio 94. Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de pesetas y el modelo B en 2 millones. La oferta

Más detalles

Programación lineal. 2.1 Problemas PAU

Programación lineal. 2.1 Problemas PAU 1 Programación lineal 2.1 Problemas PAU Junio 94: Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de ptas. y el modelo B a 2

Más detalles

Resolución CON LÁPIZ Y PAPEL apartado (a)

Resolución CON LÁPIZ Y PAPEL apartado (a) DP. - S - 5119 2007 Matemáticas ISSN: 1988-379X 007 Diego desea repartir su tiempo de vacaciones entre dos lugares ( y ). El día de estancia en le cuesta 100 mientras que en 200. Su presupuesto global

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas.

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas. Junio 94 a) Puede fabricar: 12/7 de modelo a y 12/7 del modelo B 10 del modelo A y 10 del B 20 del modelo A y 10 del B 20 del modelo A y 0 del B 4 del modelo A y 0 del B b) Debe vender 20 coches de tipo

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios 1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto

Más detalles

SOLO ENUNCIADOS. PROGRAMACIÓN LINEAL (Parte I)

SOLO ENUNCIADOS. PROGRAMACIÓN LINEAL (Parte I) DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X SOLO ENUNCIADOS. PROGRAMACIÓN LINEAL (Parte I) 001 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

Problemas de Investigación Operativa y Programación Matemática

Problemas de Investigación Operativa y Programación Matemática Problemas de Investigación Operativa y Programación Matemática Omar J. Casas López Septiembre 2002 Tema I : Introducción 1. Una factoría fabrica dos tipos de productos, A y B. Para su elaboración se requieren

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios 1. En un taller de carpintería se fabrican mesas de cocina de formica y de madera. Las de formica se venden a 210 euros y las de madera a 280 euros. La maquinaria del taller condiciona la producción, por

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org 1. (PAU junio 2003 A1). Dada la siguiente ecuación matricial: 3 2 x 10 x 2 1 y 6 y 0 1 z 3 obtener de forma razonada los valores de x, y, z. 2. (PAU junio 2003 A2). Una compañía fabrica y vende dos modelos

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Actividades de ampliación

Actividades de ampliación MATEMÁTICAS º SECUNDARIA CUADERNO DE ACTIVIDADES DE AMPLIACIÓN Nombre: Curso: Fecha de entrega: MATEMÁTICAS º ESO Números naturales. Divisibilidad. Explica cómo se puede calcular mentalmente cada una de

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

ESPACIOS AFINES.ESPACIOS MÉTRICOS GEOMETRÍA MÉTRICA.

ESPACIOS AFINES.ESPACIOS MÉTRICOS GEOMETRÍA MÉTRICA. ESPACIOS AFINES.ESPACIOS MÉTRICOS GEOMETRÍA MÉTRICA.. Consideramos ( V, +, R ) espacio vectorial sobre ( R, +, ). Prueba que ( R, V, + ) con + : V x R R es un espacio afín de (( x, x ),( P, P )) ( x +

Más detalles

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

Curso ON LINE Tema 5 MATRICES LITERALES

Curso ON LINE Tema 5 MATRICES LITERALES urso ON LINE Tema 5 1 2 3 4 5 MATRIES LITERALES Una fábrica de automóviles dispone en el mes de junio de tres modelos: económico, de lujo y deportivo. En determinada ciudad la firma posee tres concesionarios,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA.

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. 001 002 003 004 005 006 007 008 009 010 011 012 Una tienda posee 3 tipos de conservas, A, B y C. El precio

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

Unidad 5. La función productiva de la empresa. U5 - La función productiva de la empresa @MaryPaz

Unidad 5. La función productiva de la empresa. U5 - La función productiva de la empresa @MaryPaz Unidad 5 La función productiva de la empresa 1 Producir consiste en incrementar la utilidad de los bienes para satisfacer necesidades humanas. 2 El proceso de producción 3 Ejm: proceso de fabricación de

Más detalles

www.aulamatematica.com

www.aulamatematica.com www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

4Soluciones a los ejercicios y problemas

4Soluciones a los ejercicios y problemas PÁGINA 75 Pág. 1 P RACTICA 1 Calcula mentalmente: a) 50% de 360 b)25% de 88 c) 10% de 1 375 d)20% de 255 e) 75% de 800 f) 30% de 150 a) 50% de 360 8 180 b) 25% de 88 8 22 c) 10% de 1 375 8 137,5 d) 20%

Más detalles

RESOLUCIÓN DE PROBLEMAS

RESOLUCIÓN DE PROBLEMAS RESOLUCIÓN DE PROBLEMAS La resolución de problemas mediante ecuaciones tiene una serie de dificultades que nos llevan a plantear un tema separado del resto. Las dificultades, llegado este punto en que

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. 001 00 00 004 005 006 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. Una granja se dedica a la cría de faisanes. El beneficio que puede obtener semanalmente está relacionado con el

Más detalles

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 1 SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 102. PAU Universidad de Oviedo Fase General OPCIÓN A junio 2010 Dos amigos, Ana y Nicolás, tienen en total 60 euros. Además se

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

Por otra parte todas las nuevas instalaciones se amortizaran linealmente durante 10 años con un valor residual nulo.

Por otra parte todas las nuevas instalaciones se amortizaran linealmente durante 10 años con un valor residual nulo. SUPUESTO 10 BIS El señor Arturo López heredó de su padre el negocio familiar: un almacén de desguace de coches. Dicho negocio ha estado siempre financiado con recursos propios. En la actualidad, y para

Más detalles

2.1 EL PROCESO DE COMPRAS:

2.1 EL PROCESO DE COMPRAS: 2.1 EL PROCESO DE COMPRAS: El departamento de compras es el encargado de recibir las solicitudes de los materiales necesarios, de buscar los proveedores adecuados y de realizar las gestiones oportunas

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

TP1 Programación Lineal - 2009

TP1 Programación Lineal - 2009 Problema Trabajo Práctico Nº 1 de cerdo. Una carnicería 1 La carne prepara vaca hamburguesas contiene 80% con de carne una combinación y 20% de grasa de carne y le molida cuesta de $5 vaca el kilo, y carne

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

-.PROGRAMACION LINEAL.- Problemas resueltos

-.PROGRAMACION LINEAL.- Problemas resueltos -.PROGRAMACION LINEAL.- Problemas resueltos EJEMPLO 1. Un expendio de carnes de la ciudad acostumbra preparar la carne para albondigón con una combinación de carne molida de res y carne molida de cerdo.

Más detalles

TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables

TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables En cada caso plantear el problema y encontrar la solución por el método grafico. Utilice el software QSB para verificar la solución.

Más detalles

A 1 g. 5 g 3 g 2 euros. 2 g

A 1 g. 5 g 3 g 2 euros. 2 g 1. [2014] [EXT-A] Una fábrica produce dos tipos de bombillas: halógenas y LED. La capacidad máxima diaria de fabricación es de 1000, entre bombillas halógenas y LED, si bien no puede fabricar más de 800

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

1. Concepto de Período Medio de Maduración económico y financiero de una empresa industrial. (2 puntos)

1. Concepto de Período Medio de Maduración económico y financiero de una empresa industrial. (2 puntos) OPCIÓN A PREGUNTAS TEÓRICAS 1. Concepto de Período Medio de Maduración económico y financiero de una empresa industrial. (2 puntos) 2. La departamentalización de la empresa. Tipos de departamentos y el

Más detalles

EJERCICIOS METODO SIMPLEX

EJERCICIOS METODO SIMPLEX EJERCICIOS METODO SIMPLEX 1. Un empresario pretende fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado

Más detalles

INDUSTRIAS DEL MEDITERRÁNEO S.A.

INDUSTRIAS DEL MEDITERRÁNEO S.A. Original de los profesores Ramón Gurriarán y Tomás Garicano del IE Business School. Versión original de 14 de abril de 1997. Última versión 30 de mayo de 2011. Editado por el Departamento de Publicaciones

Más detalles

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios 1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 Problema 1. Dadas las matrices: 4 A = 1 0 1 1 B = 2 2 0 y 2 C = 1 0 2 Calcular la matriz X que verifica la ecuación AXB =2C Problema 2. Un banco

Más detalles

Modulo 1: Conceptos del ciclo contable 1 Conceptos contables: la cuenta.

Modulo 1: Conceptos del ciclo contable 1 Conceptos contables: la cuenta. Modulo 1: Conceptos del ciclo contable 1 Conceptos contables: la cuenta. 1.01 Contabilidad y patrimonio. 1.01.01 Primeras nociones de contabilidad. 1.01.02 El patrimonio de la empresa. Elementos. 1.01.03

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

4Soluciones a las actividades de cada epígrafe

4Soluciones a las actividades de cada epígrafe PÁGINA 64 Pág. 1 En esta unidad vas a revisar algunas técnicas y razonamientos que se utilizan en la resolución de situaciones cotidianas. Es decir, vas a fijar procedimientos que tienen una aplicación

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

5 SISTEMAS DE ECUACIONES

5 SISTEMAS DE ECUACIONES 5 SISTEMAS DE ECUACINES EJERCICIS PRPUESTS 5. Escribe estos enunciados en forma de una ecuación con dos incógnitas. a) Un número más el doble de otro es. La diferencia de dos números es 5. c) Un número

Más detalles

Guía de Ejercicios. Matemática 11

Guía de Ejercicios. Matemática 11 Guía de Ejercicios Matemática 11 Matemática 11 Resolver: 1) 5 + 3x 31 3x 5) 3(2x 1) > 4+5(x 1) 6) x + 4 3 > 2x 3 +1 4 1 7) 4 (2x 1) x

Más detalles

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

1. La empresa Red Canarias S.A. debe elegir uno de los tres proyectos de inversión siguientes:

1. La empresa Red Canarias S.A. debe elegir uno de los tres proyectos de inversión siguientes: I. Valor actual neto () Practicar en TU PROPIA calculadora los exponenciales El tipo de interés, pasarlo del % al tanto por 1(i): 1+i Los flujos de capitales C de la tabla del enunciado pueden ser negativos

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD 1 PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o

Más detalles

Colección de Problemas IV

Colección de Problemas IV 1.- Una compañía se dedica a la elaboración de 2 productos, la demanda de estos productos es de 200 unidades para cada uno de ellos. La compañía podrá elaborar los productos o comprarlos a un proveedor.

Más detalles

Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.)

Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.) Relación de ejercicios sobrantes de Matemáticas aplicadas a las Ciencias Sociales II (Segundo de Bachillerato L.O.G.S.E.) 1 Nota: Esta relación de ejercicios la ha elaborado la Ponencia de Matemáticas

Más detalles

DIRECCIÓN FINANCIERA Y CONTROL DE GESTIÓN

DIRECCIÓN FINANCIERA Y CONTROL DE GESTIÓN APARTADO 5: Gestión de la cadena DIAPOSITIVA Nº: 11 EJERCICIO RESUELTO Nº 1: CASO PRÁCTICO Empresa ALMA CASO PRÁCTICO Empresa ALMA La empresa ALMA, S.A. se dedica a la fabricación y comercialización de

Más detalles

EXAMEN DE ECONOMÍA: EXAMEN FINAL DE MAYO BHCS 2º OPCIÓN A

EXAMEN DE ECONOMÍA: EXAMEN FINAL DE MAYO BHCS 2º OPCIÓN A EXAMEN DE ECONOMÍA: EXAMEN FINAL DE MAYO BHCS 2º OPCIÓN A 18/05/2015 1. Defina el concepto de estrategia de crecimiento externo de una empresa (1 punto). El crecimiento externo se produce como consecuencia

Más detalles
Sitemap