x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0"

Transcripción

1 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y sillas que vende a 20 y 30 por unidad, respectivamente. Desea saber cuántas unidades de cada artículo debe fabricar diariamente un operario para maximizar los ingresos, teniéndose las siguientes restricciones: El número total de unidades de los dos tipos no podrá exceder de 4 por día y operario. Cada mesa requiere 2 horas para su fabricación; cada silla, 3 horas. La jornada laboral máxima es de 10 horas. El material utilizado en cada mesa cuesta 4. El utilizado en cada silla cuesta 2. Cada operario dispone de 12 diarios para material. (a) Exprésense la función objetivo y las restricciones del problema. (b) Represéntese gráficamente la región factible y calcúlense los vértices de la misma. (c) Razónese si con estas restricciones un operario puede fabricar diariamente una mesa y una silla, y si esto le conviene a la empresa. (d) Resuélvase el problema. Si llamamos x al número de mesas e y al número de sillas, las restricciones son: x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 y la función objetivo es f (x, y) = 20x + 30y. La región factible queda entonces: Con vértices: A(0, 10/3). B(2, 2). C(3, 0). Sí se pueden elaborar una sola mesa y una sola silla, puesto que el punto (1, 1) está dentro de la región factible. Sin embargo, no es un punto que maximice los ingresos, por lo que a la empresa no le interesa. Para resolver el problema, evaluamos la función objetivo en los vértices: f(0, 10/3) = 300 f(2, 2) = 100 f(3, 0) = 60. Como no tiene sentido que sean 10/3 sillas (tiene que ser un número entero) la solución es (2, 2). Es decir, se tienen que fabricar 2 sillas y 2 mesas.

2 JUNIO OPCIÓN B. En un depósito se almacenan bidones de petróleo y de gasolina. Para poder atender la demanda se han de tener almacenados un mínimo de 10 bidones de petróleo y 20 de gasolina. Siempre debe haber más bidones de gasolina que de petróleo, siendo la capacidad del depósito de 200 bidones. Por razones comerciales, deben mantenerse en inventario al menos 50 bidones. El gasto de almacenaje de un bidón de petróleo es de 20 céntimos y el de uno de gasolina es de 30 céntimos. Se desea saber cuántos bidones de cada clase han de almacenarse para que el gasto de almacenaje sea mínimo. (a) Exprésense la función objetivo y las restricciones del problema. (b) Represéntese gráficamente la región factible y calcúlense los vértices de la misma. (c) Resuélvase el problema. Sea x el número de bidones de petróleo e y el número de bidones de gasolina. Las restricciones son: x 10 y 20 y x x + y 200 x + y 50 y la función objetivo es f (x, y) = 20x + 30y a minimizar. La región factible queda: Con vértices: A(10, 190) B(10, 40) C(25, 25) D(100, 100). Para resolver el problema, evaluamos la función objetivo en los vértices: f(10, 190) = 5900 f(10, 40) = 1400 f(25, 25) = 1250 f(100, 100) = 5000 La solución óptima sería 25 de petróleo y 25 de gasolina pero se nos indica en el enunciado que siempre debe haber más de gasolina, por lo que esta solución no es válida. Buscamos un punto próximo a (25, 25) dentro de la región factible y que cumpla esta condición. El punto (25, 26), que está dentro de la región factible, tiene un valor de la función objetivo de 1280 por lo que sigue siendo mínima. La respuesta es entonces 25 de petróleo y 26 de gasolina.

3 JUNIO OPCIÓN B. Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y C. En una semana, el grupo G1 es capaz de asfaltar 3 unidades en la zona A, 2 en la zona B y 2 en la zona C. El grupo G2 es capaz de asfaltar semanalmente 2 unidades en la zona A, 3 en la zona B y 2 en la zona C. El coste semanal se estima en euros para G1 y en 3500 euros para G2. Se necesita asfaltar un mínimo de 6 unidades en la zona A, 12 en la zona B y 10 en la zona C. Cuántas semanas deberá trabajar cada grupo para finalizar el proyecto con el mínimo coste? Sea x el número de semanas que trabaja el grupo G1. Sea y el número de semanas que trabaja G2. Nº de A B C Coste semanas G1 x x G2 y y Totales La función objetivo a minimizar es f (x, y) = 33000x y sujeta a: 3x + 2y 6 2x + 3y 12 2x + 2y 10 x 0, y 0 Por lo que la región factible queda: Con vértices: A(0, 5), B(3, 2) y C(6, 0) Evaluamos la función objetivo en cada uno de ellos: f(0, 5) = f(3, 2) = f(6, 0) = Por lo que la solución óptima es que el grupo G1 trabaje 3 semanas y el grupo G2 trabaje 2. Así se logrará un coste de

4 JUNIO OPCIÓN B. Un vendedor quiere dar salida a 400 kg de garbanzos, 300 kg de lentejas y 250 kg de judías. Para ello hace dos tipos de paquetes. Los de tipo A contienen 2 kg de garbanzos, 2 kg de lentejas y 1 kg de judías y los de tipo B contienen 3 kg de garbanzos, 1 kg de lentejas y 2 kg de judías. El precio de venta de cada paquete es de 25 euros para los del tipo A y de 35 euros para los del tipo B. Cuántos paquetes de cada tipo debe vender para obtener el máximo beneficio y a cuánto asciende éste? Nº Garbanzos Lentejas Judías Beneficio paquetes A x x B y y Totales La función a maximizar es f (x, y) = 25x + 35y sujeta a: 2x + 3y 400 2x + y 300 x + 2y 250 x 0, y 0 Por lo que la región factible es: Con vértices A(0, 125), B(50, 100), C(125, 50) y D(150, 0). Evaluamos la función objetivo en cada uno de ellos: f(0, 125) = 4375 f(50, 100) = 4750 f(125, 50) = 4875 f(150, 0) = 3750 El beneficio máximo se obtiene con 125 paquetes de tipo A y 50 de tipo B. Así se obtendrá un beneficio de 4875.

5 JUNIO OPCIÓN A. Un producto se compone de la mezcla de otros dos A y B. Se tienen 500 kg de A y 500 kg de B. En la mezcla, el peso de B debe ser menor o igual que 1,5 veces el de A. Para satisfacer la demanda, la producción debe ser mayor o igual que 600 kg. Sabiendo que cada kg de A cuesta 5 euros y que cada kg de B cuesta 4 euros, calcular los kg de A y B que deben emplearse para hacer una mezcla de coste mínimo, que cumpla los requisitos anteriores. Obtener dicho coste mínimo. Llamamos x a la cantidad de kg de A que deben emplearse e y a la cantidad de kg de B. Las restricciones del problema son: x 500, y 500 y 1,5x x + y 600 x 0, y 0 y la función objetivo es f (x, y) = 5x + 4y a minimizar. La región factible es: Con vértices: A(1000/3, 500), B(500, 500), C(500, 100) y D(240, 360). Evaluamos en cada uno de ellos: f(1000/3, 500) = 3666,7 f(500, 500) = 4500 f(500, 100) = 2900 f(240, 360) = 2640 El coste mínimo se logra entonces para 240kg del producto A y 360kg del producto B lográndose un coste de 2640.

6 SEPTIEMBRE OPCIÓN B. Un establecimiento de prendas deportivas tiene almacenados 1600 bañadores, 1000 gafas de baño y 800 gorros de baño. Se quiere incentivar la compra de estos productos mediante la oferta de dos tipos de lotes: el lote A, que produce un beneficio de 8 euros, formado por un bañador, un gorro y unas gafas, y el lote B que produce un beneficio de 10 euros y está formado por dos bañadores y unas gafas. Sabiendo que la publicidad de esta oferta tendrá un coste de 1500 euros a deducir de los beneficios, se pide calcular el número de lotes A y B que harán máximo el beneficio y a cuánto asciende este. Nº lotes Bañadores Gafas de Gorros de Beneficio baño baño A x x B y y Totales La función a maximizar es f (x, y) = 8x +10y 1500 sujeta a: x + 2y 1600 x + y 1000 x 800 x 0, y 0 La región factible es: Con vértices A(0, 800), B(800, 0), C(800, 200) y D(400, 600). Evaluamos en cada uno de ellos: f(0, 800) = 6500 f(800, 0) = 4900 f(800, 200) = 6900 f(400, 600) = 7700 El beneficio máximo se obtiene para 400 lotes de tipo A y 600 de tipo B. El beneficio es de 7700.

7 SEPTIEMBRE OPCIÓN A. En una empresa de alimentación se dispone de 24 kg de harina de trigo y 15 kg de harina de maíz, que se utilizan para obtener dos tipos de preparados: A y B. La ración del preparado A contiene 200 g de harina de trigo y 300 de harina de maíz, con 600 cal de valor energético. La ración de B contiene 200 g de harina de trigo y 100 g de harina de maíz, con 400 cal de valor energético. Cuántas raciones de cada tipo hay que preparar para obtener el máximo rendimiento energético total? Obtener el rendimiento máximo. Con los datos anteriores se obtiene: Cantidad H. trigo H. maíz V. energético Preparado A x 200x 300x 600x Preparado B y 200y 100y 400y Disponibilidades g g El objetivo es maximizar el valor energético. Esto es: Maximizar V(x, y) = 600x + 400y restringido por: 200x + 200y x + y x + 100y x + y 150 x 0; y 0 Estas restricciones generan la región factible (sombreada) en la siguiente figura. Los vértices son: O = (0, 0), P = (0, 120), Q: x + y = 120 3x + y = 150 Q = (15, 105) y R = (50, 0). Como sabemos, los valores máximos y mínimos se encuentran en alguno de esos vértices. El valor calorífico para cada nivel de preparados es: En O, V(0, 0) = 0. En P, V(0, 120) = cal En Q, V(15, 105) = cal. En R, V(50, 0) = cal. El máximo, que es calorías, se obtiene fabricando 15 preparados del tipo A y 105 del tipo B.

8 JUNIO OPCIÓN A. Una papelería quiere liquidar hasta 78 kg de papel reciclado y hasta 138 kg de papel normal. Para ello hace dos tipos de lotes, A y B. Los lotes A están formados por 1 kg de papel reciclado y 3 kg de papel normal, y los lotes B por 2 kg de papel de cada clase. El precio de venta de cada lote A es de 0,9 euros y el de cada lote B es de 1 euro. Cuántos lotes A y B debe vender para maximizar sus ingresos? A cuánto ascienden estos ingresos máximos? Con los datos anteriores se obtiene: Cantidad P reciclado P normal Ingresos Lote A x x 3x 0,9x Lote B y 2y 2y y Disponibilidades 78 kg 138 kg El objetivo es maximizar los ingresos. Esto es: Maximizar I(x, y) = 0,9x + y restringido por: x + 2y 78 3x + 2y 138 x 0; y 0 Estas restricciones generan la región factible (sombreada) en la siguiente figura. Los vértices son: O = (0, 0), P = (0, 39), x + 2y = 78 Q: 3x + 2y = 138 Q = (30, 24) y R = (46, 0). Como sabemos, los valores máximos y mínimos se encuentran en alguno de esos vértices. Los ingresos para cada una de esas soluciones son: En O, I(0, 0) = 0. En P, I(0, 39) = 39 En Q, I(30, 24) = 5l. En R, I(46, 0) = 41,4. El máximo, que vale 51, se obtiene haciendo 30 lotes del tipo A y 24 del tipo B.

9 SEPTIEMBRE OPCIÓN A. Una empresa fabrica láminas de aluminio de dos grosores, finas y gruesas, y dispone cada mes de 400 kg de aluminio y 450 horas de trabajo para fabricarlas. Cada m 2 de lámina fina necesita 5 kg de aluminio y 10 horas de trabajo, y deja una ganancia de 45 euros. Cada m 2 de lámina gruesa necesita 20 kg de aluminio y 15 horas de trabajo, y deja una ganancia de 80 euros. Cuántos m 2 de cada tipo de lámina debe fabricar la empresa al mes para que la ganancia sea máxima, y a cuánto asciende esta? Con los datos anteriores se obtiene la tabla: Cantidad Aluminio Trabajo Ganancia Lámina fina x 5x 10x 45x Lámina gruesa y 20y 15y 80y Disponibilidades 400 kg 450 h El objetivo es maximizar la ganancia, que es: G(x, y) = 45x + 80y restringida por: 5x + 20y x + 15y 450 x 0; y 0 Estas restricciones generan la región factible (sombreada) en la siguiente figura: Los vértices son: O = (0, 0), P = (0, 20), Q: 5x + 20 y = x + 15y = 450 Q = (24, 14) y R = (45, 0). Como sabemos, los valores máximos y mínimos de la función objetivo se encuentran en alguno de esos vértices. La ganancia para cada una de esas soluciones es: En O, G(0, 0) = 0. En P, G(0, 20) = 1600 En Q, G(24, 14) = 2200 En R, G(45, 0) = La ganancia máxima, que asciende a 2200 euros, se obtiene fabricando 24 láminas finas y 14 gruesas.

10 JUNIO OPCIÓN B. Una empresa de instalaciones dispone de 195 kg de cobre, 20 kg de titanio y 14 kg de aluminio. Para fabricar 100 metros de cable de tipo A se necesitan 10 kg de cobre, 2 de titanio y 1 de aluminio, mientras que para fabricar l00 metros de cable de tipo B se necesitan 15 kg de cobre, 1 de titanio y 1 de aluminio. El beneficio que se obtiene por 100 metros de cable de tipo A es de 1500 euros, y por 100 metros de cable de tipo B, 1000 euros. Calcular los metros de cable de cada tipo que hay que fabricar para maximizar el beneficio de la empresa. Obtener dicho beneficio máximo. Sean x e y los metros de cable de tipo A y B respectivamente expresados en cientos de metros. El problema a resolver es: Max f ( x, y) = 1500x y 10x + 15y 195 2x + y 20 x + y 14 x 0 y 0 Con región factible Los vértices son: (0,0) con f(0,0)=0 (10,0) con f(10,0)=15000 (0,13) con f(0,13)=13000 (3,11) con f(3,11)=15500 (6,8) con f(6,8)=17000 Por tanto, la función tiene su máximo en (6,8). Es decir, se obtendrá beneficio máximo con 600 metros de cable tipo A y 800 metros de cable tipo B.

11 SEPTIEMBRE OPCIÓN B. Una aerolínea quiere optimizar el número de filas de clase preferente y de clase turista en un avión. La longitud útil del avión para instalar las filas de asientos es de 104m, necesitándose 2m para instalar una fila de clase preferente y 1,5m para las de clase turista. La aerolínea precisa instalar al menos 3 filas de clase preferente y que las filas de clase turista sean como mínimo el triple que las de clase preferente. Los beneficios por fila de clase turista son de 152 euros y de 206 euros para la clase preferente. Cuántas filas de clase preferente y cuantas de clase turista se deben instalar para obtener el beneficio máximo? Indicar dicho beneficio. Si x es el número de filas de clase preferente e y el de clase turista, la función objetivo a maximizar es: f (x, y) = 206x +152y sujeta a: 2x +1,5y 104 x 3 (se puede omitir x 0 porque está incluida en x 3 ). y 3x x 0, y 0 La región factible queda: Con vértices A(16, 48), B(3, 196/3) y C(3, 9). En cada uno de ellos la función objetivo vale: f(16, 48) = f(3, 196/3) = 10548,6 f(3, 9) = 1986 El beneficio máximo se obtiene para 16 filas de clase preferente y 48 de clase turista, siendo un beneficio de

12 JUNIO OPCIÓN B. Un distribuidor de aceite de oliva compra la materia prima a dos almazaras, A y B. Las almazaras A y B venden el aceite a 2000 y 3000 euros por tonelada, respectivamente. Cada almazara le vende un mínimo de 2 toneladas y un máximo de 7, y para atender a su demanda, el distribuidor debe comprar en total un mínimo de 6 toneladas. El distribuidor debe comprar como máximo a la almazara A el doble de aceite que a la almazara B. Qué cantidad de aceite debe comprar el distribuidor a cada una de las almazaras para obtener el mínimo coste? Determínese dicho coste. Llamaremos x a las toneladas de aceite que se compran de la almazara A, e y, a las toneladas de aceite que se compran de la almazara B. Agrupamos los datos en la siguiente tabla: Mínimo Máximo Coste por tonelada Almazara A Almazara B Se trata de minimizar la función objetivo que viene dada como restricciones siguientes: f ( x, y ) = 2000x y, sujeta a las x + y 6 x + y 6 x 2y x 2y 0 2 x 7 2 x 7 2 y 7 2 y 7 La región factible viene dada por: Los vértices del recinto son (4, 2), (7; 3,5), (7, 7), (2, 7) y (2, 4). La función objetivo en dichos puntos viene dada por: ( 4,2) f ( 4,2) = ( 7;3,5 ) f ( 7;3,5 ) ( 7 7, ) f ( 7 7, ) = ( 2 7, ) f ( 2 7, ) = ( 2,4 ) f ( 2,4 ) = = Por tanto, el mínimo se obtiene comprando 4 toneladas de aceite en la almazara A y 2 toneladas en la almazara B.

13 SEPTIEMBRE OPCIÓN B. Se desea invertir una cantidad de dinero menor o igual que euros, distribuidos entre acciones del tipo A y del tipo B. Las acciones del tipo A garantizan una ganancia del 10% anual, siendo obligatorio invertir en ellas un mínimo de euros y un máximo de euros. Las acciones del tipo B garantizan una ganancia del 5% anual, siendo obligatorio invertir en ellas un mínimo de La cantidad invertida en acciones del tipo B no puede superar el triple de la cantidad invertida en acciones del tipo A. Cuál debe ser la distribución de la inversión para maximizar la ganancia anual? Determínese dicha ganancia anual. Llamaremos x al dinero invertido en acciones del tipo A e y al dinero invertido en acciones del tipo B. Podemos plantear el problema como sigue: Máx f ( x, y) = 0,1x + 0,05 y x + y ( azul ) x 81000( negro ) y 25000( verde ) y 3x( rojo ) El conjunto de soluciones factibles viene dada por la región: Sabemos que las soluciones se encuentran en los vértices del conjunto que son: (30 000, ) (80 000, ) azul y negro (80 000, ) azul y rojo (31 250, ) (30 000, ) La función objetivo en dichos puntos toma los valores: f f f ( 30000,25000) f ( 80000,25000) ( 80000,45000) ( 31250,93750) f ( 30000,90000) = 4250 = 9250 = = 7812,5 = 7500 Por tanto, el máximo beneficio se obtiene invirtiendo euros en las acciones del tipo A y euros en las de tipo B.

14 JUNIO OPCIÓN B. Una refinería utiliza dos tipos de petróleo, A y B, que compra a un precio de 350 euros y 400 euros por tonelada, respectivamente. Por cada tonelada de petróleo de tipo A que refina, obtiene 0,10 toneladas de gasolina y 0,35 toneladas de fuel- oil. Por cada tonelada de petróleo de tipo B que refina, obtiene 0,05 toneladas de gasolina y 0,55 toneladas de fuel- oil. Para cubrir sus necesidades necesita obtener al menos 10 toneladas de gasolina y al menos 50 toneladas de fuel- oil. Por cuestiones de capacidad, no puede comprar más de 100 toneladas de cada tipo de petróleo. Cuántas toneladas de petróleo de cada tipo debe comprar la refinería para cubrir sus necesidades a mínimo coste? Determinar dicho coste mínimo. 80 toneladas de tipo A y 40 del tipo B con un coste de SEPTIEMBRE OPCIÓN A. Una carpintería vende paneles de contrachapado de dos tipos A y B. Cada m 2 de panel de tipo A requiere 0,3 horas de fabricación y 0,2 horas de barnizado, proporcionando su venta un beneficio de 4. Cada m 2 de panel de tipo B requiere 0,2 horas para su fabricación y 0,2 horas para su barnizado, proporcionando su venta un beneficio de 3. Sabiendo que en una semana se trabaja un máximo de 240 horas en el taller de fabricación y 200 horas en el de barnizado, calcular los m 2 de cada tipo de panel que debe vender semanalmente la carpintería para que el beneficio sea máximo. 400m 2 de tipo A y 600m 2 de tipo B con un beneficio de JUNIO OPCIÓN A. Un club de fútbol dispone de un máximo de 2 millones de euros para fichajes de futbolistas españoles y extranjeros. Se estima que el importe total de las camisetas vendidas por el club con el nombre de futbolistas españoles es igual al 10% de la cantidad total invertida por el club en fichajes españoles, mientras que el importe total de las camisetas vendidas con el nombre de futbolistas extranjeros es igual al 15% de la cantidad total invertida por el club en fichajes de extranjeros. Los estatutos del club limitan a un máximo de euros la inversión total en fichajes extranjeros y exigen una cantidad total invertida en fichajes de futbolistas españoles sea como mínimo de euros. Además, la cantidad total invertida en fichajes de españoles ha de ser mayor o igual a la invertida en fichajes extranjeros. Qué cantidad debe invertir el club en cada tipo de fichajes para que el importe de las camisetas vendidas sea máximo? Calcúlese dicho importe máximo. Justifíquese en fichajes españoles y en extranjeros. El beneficio sería de

15 SEPTIEMBRE OPCIÓN B. Un pintor necesita pintura para pintar como mínimo una superficie de 480 m 2. Puede comprar la pintura a dos proveedores, A y B. El proveedor A le ofrece una pintura con un rendimiento de 6 m 2 por kg y un precio de 1 euro por kg. La pintura del proveedor B tiene un precio de 1,2 euros por kg y un rendimiento de 8 m 2 por kg. Ningún proveedor le puede proporcionar más de 75 kg de pintura y el presupuesto máximo del pintor es de 120 euros. Calcúlese la cantidad de pintura que el pintor tiene que comprar a cada proveedor para obtener el mínimo coste. Calcúlese dicho coste mínimo. El coste mínimo de 72 se logra con 0kg del proveedor A y 60kg del proveedor B. SEPTIEMBRE OPCIÓN A. Un pintor dispone de dos tipos de pintura para realizar su trabajo. El primer tipo de pintura tiene un rendimiento de 3 m 2 por litro, con un coste de 1 por litro, el segundo tipo de pintura tiene un rendimiento de 4 m 2 por litro, con un coste de 1,2 por litro. Con ambos tipos de pintura se puede pintar a un ritmo de 1 litro cada 10 minutos. El pintor dispone de un presupuesto de 480 y no puede pintar durante más de 75 horas. Además, debe utilizar al menos 120 litros de cada tipo de pintura. Determínese la cantidad de pintura que debe utilizar de cada tipo si su objetivo es pintar la máxima superficie posible. Indíquese cuál es esa superficie máxima. 120 litros de pintura del primer tipo y 300 del segundo. Podrían pintarse 1560m 2.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados. Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados. Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados Isaac Musat Hervás 22 de noviembre de 2015 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................

Más detalles

1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima: 3 puntos)

1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima: 3 puntos) EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II UNIDAD: PROGRAMACIÓN LINEAL 1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima:

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

PROGRAMACIÓN LINEAL. x, y 0. y x 3 5x y 27. f x, y =15x 25y

PROGRAMACIÓN LINEAL. x, y 0. y x 3 5x y 27. f x, y =15x 25y PROGRAMACIÓN LINEAL Jun.08) Una compañía de telefonía móvil quiere celebrar una jornada de Consumo razonable y ofrece a sus clientes la siguiente oferta: 15 céntimos de euro por cada mensaje SMS y 25 céntimos

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II ACS. Universidad Complutense (Madrid)

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II ACS. Universidad Complutense (Madrid) COLEGIO INTERNACIONAL SEK EL CASTILLO Departamento de Ciencias MODELOS DE EXÁMENES Pruebas de acceso a la universidad Matemáticas II ACS Universidad Complutense (Madrid) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD

Más detalles

EJERCICIOS METODO SIMPLEX

EJERCICIOS METODO SIMPLEX EJERCICIOS METODO SIMPLEX 1. Un empresario pretende fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

-.PROGRAMACION LINEAL.- Problemas resueltos

-.PROGRAMACION LINEAL.- Problemas resueltos -.PROGRAMACION LINEAL.- Problemas resueltos EJEMPLO 1. Un expendio de carnes de la ciudad acostumbra preparar la carne para albondigón con una combinación de carne molida de res y carne molida de cerdo.

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Enunciados) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Enunciados) Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Enunciados) Isaac Musat Hervás 22 de noviembre de 2015 2 Índice general 1. Año 2000 7 1.1. Modelo 2000 - Opción

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos

Más detalles

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios 1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Problemas de Investigación Operativa y Programación Matemática

Problemas de Investigación Operativa y Programación Matemática Problemas de Investigación Operativa y Programación Matemática Omar J. Casas López Septiembre 2002 Tema I : Introducción 1. Una factoría fabrica dos tipos de productos, A y B. Para su elaboración se requieren

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

www.aulamatematica.com

www.aulamatematica.com www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL USANDO LA HOJA DE CÁLCULO EXCEL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL USANDO LA HOJA DE CÁLCULO EXCEL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL USANDO LA HOJA DE CÁLCULO EXCEL (Ejercicios propuestos por los estudiantes) (No tienen un orden establecido por dificultad o por tipo de problemas, se incluyen

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios 1. En un taller de carpintería se fabrican mesas de cocina de formica y de madera. Las de formica se venden a 210 euros y las de madera a 280 euros. La maquinaria del taller condiciona la producción, por

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

Colección de Problemas IV

Colección de Problemas IV 1.- Una compañía se dedica a la elaboración de 2 productos, la demanda de estos productos es de 200 unidades para cada uno de ellos. La compañía podrá elaborar los productos o comprarlos a un proveedor.

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1.

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1. IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio. ( puntos) Se desea invertir una cantidad de dinero menor o igual que 000 euros,

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Formulación de Modelos de Programacón Lineal 25 de julio de 2003 La (LP es una herramienta para resolver problemas de optimización

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

PROGRAMACIÓN LINEAL Junio 94. Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de pesetas y el modelo B en 2 millones. La oferta

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

Selectividad Junio 2008 JUNIO 2008 PRUEBA A

Selectividad Junio 2008 JUNIO 2008 PRUEBA A Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás 5 de octubre de 2014 2 Índice general 1. Año 2000 7 1.1. Modelo 2000 - Opción

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

TP1 Programación Lineal - 2009

TP1 Programación Lineal - 2009 Problema Trabajo Práctico Nº 1 de cerdo. Una carnicería 1 La carne prepara vaca hamburguesas contiene 80% con de carne una combinación y 20% de grasa de carne y le molida cuesta de $5 vaca el kilo, y carne

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios 1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las

Más detalles

Programación lineal. 2.1 Problemas PAU

Programación lineal. 2.1 Problemas PAU 1 Programación lineal 2.1 Problemas PAU Junio 94: Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de ptas. y el modelo B a 2

Más detalles

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos)

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (2012) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B.

Más detalles

Capítulo 5 Método Simplex

Capítulo 5 Método Simplex Capítulo 5 Método Simplex Cj 5-2 3 0 -M 0 0 V.B. b X1 X2 X3 X4 X5 X6 X7 5 X1 13/9 1 0 0-4/15 4/15 7/45 4/45 NO 3 X3 14/9 0 0 1 1/15-1/15 2/45 14/45 70/3-2 X2 1/3 0 1 0-3/15 3/15-2/15 1/15 NO Zj - Cj 101/9

Más detalles

PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA

PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA 1 PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA 1. - Se han comprado 115 litros de vino por 69 euros. Cuál es el beneficio que se obtiene en cada litro de vino, si se vende a 1,5 euros el litro?. 2.

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA.

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. 001 002 003 004 005 006 007 008 009 010 011 012 Una tienda posee 3 tipos de conservas, A, B y C. El precio

Más detalles

Programación Lineal: Modelos PLE

Programación Lineal: Modelos PLE Programación Lineal: Modelos PLE CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas Programación Lineal: Modelos PLE euresti@itesm.mx 1 / 35 Introduccion Introduccion En esta lectura se verán cómo

Más detalles

Problemas de proporcionalidad

Problemas de proporcionalidad Problemas de proporcionalidad REGLA DE TRES SIMPLE DIRECTA E INVERSA. 1.- En 50 litros de agua de mar hay 1.300 g. de sal. Cuántos litros hacen falta para 5.200 g. de sal? 2.- Un coche gasta 5 litros de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

TRABAJO PRÁCTICO. Destinos 1 2 3 Oferta (u.) A 10 8 4 45 B 9 5 7 50 C 3 6 9 45 D 5 7 6 30 Demanda (u.) 90 30 50

TRABAJO PRÁCTICO. Destinos 1 2 3 Oferta (u.) A 10 8 4 45 B 9 5 7 50 C 3 6 9 45 D 5 7 6 30 Demanda (u.) 90 30 50 1 TRABAJO PRÁCTICO TEMA:TEORÍA DE TRANSPORTE Y ASIGNACIÓN PERSONAL 1) Una empresa tiene tres fábricas en distintos lugares del país que abastecen a 5 puestos minoristas. Los costos de envío de 1 Tn. de

Más detalles

A 1 g. 5 g 3 g 2 euros. 2 g

A 1 g. 5 g 3 g 2 euros. 2 g 1. [2014] [EXT-A] Una fábrica produce dos tipos de bombillas: halógenas y LED. La capacidad máxima diaria de fabricación es de 1000, entre bombillas halógenas y LED, si bien no puede fabricar más de 800

Más detalles

Tema 2: Programación Lineal

Tema 2: Programación Lineal Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 82 - INGENIERÍA INFORMÁTICA 20 de Octubre 2008 Ejercicio JN2 Se pide que formules el siguiente problema de programación

Más detalles

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO ACTIVIDADES DE REPASO. MATEMÁTICAS º ESO NÚMEROS NATURALES. Calcula: a) 4 6 5 + 3 4 b) (4 6 5) + 3 4 c) 4 6 (5 + 3 4) d) 4 (6 5) + 3 4 e) (5 + 0) 8 f) (73 37) : 6. Calcula: a) 987 + 5 + 3 784 b) 3 978

Más detalles

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA...

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... 2 2.1. NATURALEZA DE LAS RESTRICCIONES... 2 2.2. DÓNDE ESTÁ Y CÓMO SE ENCUENTRA LA SOLUCIÓN...

Más detalles

Resolución CON LÁPIZ Y PAPEL apartado (a)

Resolución CON LÁPIZ Y PAPEL apartado (a) DP. - S - 5119 2007 Matemáticas ISSN: 1988-379X 007 Diego desea repartir su tiempo de vacaciones entre dos lugares ( y ). El día de estancia en le cuesta 100 mientras que en 200. Su presupuesto global

Más detalles
Sitemap