PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior."

Transcripción

1 PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. 2. Las 18 chicas y los 24 chicos de 2º de Bachillerato de un centro docente organizan un viaje. Para financiarlo, deciden trabajar por las tardes en una empresa encuestadora que contrata equipos de dos tipos: - Tipo A: dos chicas y cuatro chicos. - Tipo B: tres chicas y tres chicos. La empresa abona por una tarde de trabajo 300 al equipo del tipo A y 500 al equipo del tipo B. Se pide: a) Dibuja la región factible. b) Cómo les conviene distribuirse para obtener la mayor cantidad posible de dinero?. c) Si la empresa abonara por una tarde de trabajo 40 al equipo de tipo A y 40 al equipo del tipo B, cómo les convendría entonces hacer la distribución? 3. Dibuja la región del plano determinada por estas desigualdades: 2x + y 2 4x + y 0 y 0 Calcula después el máximo de la función z = x + y en esta región.

2 4. Una factoría produce coches de los modelos A y B. El beneficio por la venta de un coche del modelo A es de 450 y la venta del modelo B reporta un beneficio de 600. La capacidad de la factoría impide producir más de 400 coches por día del modelo A y más de 300 coches por día del modelo B. Además, no es posible producir diariamente más de 500 coches entre ambos modelos. Se vende toda la producción que se hace y se desea saber, razonadamente, cuántos coches interesa fabricar de cada modelo para obtener el máximo beneficio. 5. Un vendedor de libros usados tiene 180 libros de la editorial A y 160 de la editorial B, con los que decide hacer dos tipos de lotes: el lote económico, con tres libros de la editorial A y uno de la editorial B, que venderá a 8, y el lote selecto, con un libro de la editorial A y dos de la editorial B, que venderá a 10. Deduce razonadamente cuántos lotes debe hacer de cada tipo para maximizar sus ingresos al vender todos los lotes. 6. En un almacén de frutas hay 800 kg de naranjas, 800 kg de manzanas y 500 kg de plátanos. Para su venta se hacen dos lotes: A y B. El lote A contiene 1 kg de naranjas, 2 kg de manzanas y 1 kg de plátanos. El beneficio que se obtiene con el lote A es de 1,20 y con el lote B de 1,40. Determina, justificando las respuestas: c) El número de lotes de cada clase que se deben formar para conseguir unos beneficios máximos. d) El valor de dichos beneficios máximos. 7. Por Navidades, un hombre quiere preparar dos tipos de cestas, C 1 y C 2. Cada cesta del tipo C 1 ha de contener 4 barras de turrón y 2 botellas de cava, y cada cesta del tipo C 2 ha de contener 3 barras de turrón y 3 botellas de cava. Con cada cesta del tipo C 1 se obtiene un beneficio de 3 y con cada cesta del tipo C 2, un beneficio de 4. El hombre dispone de 480 barras de turrón y 360 botellas de cava. Cuántas cestas de cada tipo se tienen que preparar para obtener el beneficio máximo?. 8. En una fundición disponen de 1200 kg de hierro, 800 kg de cobre y 700 kg de níquel. Fabrican dos tipos de aleaciones: la A, en la que se mezclan los tres a partes iguales, y la B, en la que se mezclan 4 partes de hierro con dos de cobre y 1 de níquel. Los precios de venta por gramo son de 0,06 para la aleación A y 0,08 para la B. Determina cuántos kilos de cada tipo de aleación se deben fabricar para que la ganancia obtenida sea máxima.

3 9. Una fábrica de madera produce dos líneas de muebles: el clásico (C) y el funcional (F). Para su fabricación, los muebles requieren tiempo de proceso de construcción y pintura. El mueble clásico precisa una unidad de tiempo de construcción y tres de pintura, mientras que el funcional requiere dos unidades de tiempo de construcción y una de pintura. La situación actual de la empresa no permite utilizar más de diez unidades de tiempo de construcción y quince de pintura. a) Plantea el problema y representa gráficamente el conjunto de soluciones. b) Qué combinaciones de muebles puede fabricar?. c) Si el beneficio empresarial es función del número de unidades fabricadas de acuerdo con la relación B = 3C + 2F, cuántas unidades de cada línea deben fabricarse para maximizar el beneficio?. Cuál es el beneficio máximo? 10. Un distribuidor de aceite de oliva compra la materia prima a dos almazaras, A y B. Las almazaras A y B venden el aceite a 2000 y 3000 euros por tonelada, respectivamente. Cada almazara le vende un mínimo de 2 toneladas y un máximo de 7 y para atender a su demanda, el distribuidor debe comprar en total un mínimo de 6 toneladas. El distribuidor debe comprar como máximo a la almazara A el doble de aceite que a la almazara B. Qué cantidad de aceite debe comprar el distribuidor a cada una de las almazaras para obtener el mínimo coste? Determínese dicho coste mínimo. 11. Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de y el modelo B a un precio de La oferta está limitada por las existencias que son 20 coches del modelo A y 10 del modelo B, queriendo vender al menos, tantas unidades del modelo A como del modelo B. Por otra parte, para cubrir gastos de esta campaña, los ingresos obtenidos en ella deben ser, al menos, de a) Plantear el problema y representar gráficamente su conjunto de soluciones. b) Cuántos coches deberá vender de cada modelo para maximizar sus ingresos? Cuál es su importe? 12. Una compañía de telefonía móvil quiere celebrar una jornada de Consumo razonable y ofrece a sus clientes la siguiente oferta: 15 céntimos de euro por cada mensaje SMS y 25 céntimos por cada minuto de conversación incluyendo el coste de establecimiento de llamada. Impone las condiciones: El número de llamadas de un minuto no puede ser mayor que el número de mensajes aumentado en 3, ni ser menor que el número de mensajes disminuido en 3. Sumando el quíntuplo del número de mensajes con el número de llamadas no puede obtenerse más de 27. a) Dibuja la región factible.

4 b) Determina el número de mensajes y de llamadas para que el beneficio sea máximo. c) Cuál es ese beneficio máximo? 13. Cierto armador se dedica a la pesca de rape y merluza. Las cuotas pesqueras imponen que sus capturas totales no excedan las 30 toneladas (Tm). Por otro lado, la cantidad de rape como máximo puede triplicar a la de merluza y, además, esta última no puede superar las 18 Tm. Si el precio del rape es de 15 /Kg y el de la merluza 10 /Kg, Qué cantidades de cada especie debe pescar para maximizar sus ingresos? 14. Se desea invertir una cantidad de dinero menor o igual que euros, distribuidos entre acciones del tipo A y del tipo B. Las acciones del tipo A garantizan una ganancia del 10% anual, siendo obligatorio invertir en ellas un mínimo de euros y un máximo de euros. Las acciones del tipo B garantizan una ganancia del 5% anual, siendo obligatorio invertir en ellas un mínimo de euros. La cantidad invertida en acciones del tipo B no puede superar el triple de la cantidad invertida en acciones del tipo A. Cuál debe ser la distribución de la inversión para maximizar la ganancia anual? Determínese dicha ganancia máxima. 15. Una refinería utiliza dos tipos de petróleo, A y B, que compra a un precio de 350 euros y 400 euros por tonelada, respectivamente. Por cada tonelada de petróleo de tipo A que refina, obtiene 0,10 toneladas de gasolina y 0,35 toneladas de fuel-oil. Por cada tonelada de petróleo de tipo B que refina, obtiene 0,05 toneladas de gasolina y 0,55 toneladas de fuel-oil. Para cubrir sus necesidades necesita obtener al menos 10 toneladas de gasolina y al menos 50 toneladas de fuel-oil. Por cuestiones de capacidad, no puede comprar más de 100 toneladas de cada tipo de petróleo. Cuántas toneladas de petróleo de cada tipo debe comprar la refinería para cubrir sus necesidades a mínimo coste? Determinar dicho coste mínimo.

5 1. A(0,8) B(10/3, 8/3) C(10,0) Evaluamos z en cada vértice: A z = = 40 B z = 4 10/ /3 = 80/3 = 26,66. C z = = 40 El mínimo se alcanza en B y el valor mínimo es 80/3 2. Sea x: el número de equipos del tipo A y: el número de equipos del tipo B Las restricciones del problema son:

6 2x + 3y 18 4x + 3y 24 x 0 y 0 A(0,6) B(3,4) C(6,0) b) El beneficio viene dado por la expresión z = 300x + 500y Evaluamos z en cada vértice: A z = = 3000 B z = = 2900 C z = = 1800 Luego, para obtener la mayor cantidad posible de dinero, les conviene distribuirse en 6 equipos del tipo B. c) Ahora la función objetivo es z = 40x + 40y

7 Evaluamos z en cada vértice: A z = = 240 B z = = 280 C z = = 240 Esta vez les conviene distribuirse en 3 equipos tipo A y 4 equipos tipo B 3. El recinto es: La función objetivo es z = x + y Evaluamos z en cada vértice: A z = = 3 B z = = 0 C z = = 1 En el punto A(-1,4) la función z = x + y presenta un máximo 4. Sea x: el número de coches del modelo A y: el número de coches del modelo B Las restricciones del problema son:

8 0 x y 300 x + y 500 El recinto es : La función objetivo es z = 450x + 600y Evaluamos z en cada vértice: A z = = B z = = C z = = D z = = Para obtener el máximo beneficio interesa que la factoría fabrique 200 coches del modelo A y 300 coches del modelo B y se obtendrá un beneficio de Las restricciones del problema son:

9 3x + y 180 x + 2y 160 x 0 y 0 El recinto es : A(0,80) B(40,60) C(60,0) La función a maximizar es z = 8x + 10y Evaluamos z en cada vértice: A z = = 800 B z = = 920 C z = = 480 Para obtener le máximo beneficio deberá hacer 40 lotes de tipo económico y 60 lotes del tipo selecto. 6. Sean x. el número de lotes de A

10 Y: el número de lotes de B Las restricciones son: x + 2y 800 2x + y 800 x + y 500 x 0 y 0 El recinto es: La función objetivo es z = 1,20x + 1,40 y Evaluamos z en cada vértice: A z = 1, , = 560 B z = 1, ,40 300= 660 C z = 1, , = 640 D z = 1, ,40 0 = 480

11 Para conseguir los beneficios máximos se deben formar 200 lotes A y 300 lotes B. El valor del beneficio máximo es de Sean x. el número de cestas C 1 Y: el número de cestas C 2 Las restricciones son: 4x + 3y 480 2x + 3y 360 x 0 y 0 El recinto es: La función objetivo es z =3x + 4y Evaluamos z en cada vértice:

12 A z = = 480 B z = = 500 C z = = 360 Se tienen que preparar 60 cestas C 1 y 80 cestas C 2, Para obtener un beneficio máximo de Sea x: El número de kilos de aleación A Y: El número de kilos de aleación B Las restricciones son: x + 4y 1200 x + 2y 800 x + y 700 El recinto es: x 0 y 0

13 La función objetivo es z = 60x + 80 y Evaluamos z en cada vértice: A z = = B z = = C z = = D z = = Para que la ganancia sea máxima se deben fabricar 600 kg de aleación A y 100 kg de aleación B 9. Las restricciones son: C + 2F 10 3C + F 15 C 0 F 0 El recinto es: La combinación es:

14 Unidades de F Unidades de C 0 1,2,3,4 ó 5 1 0,1,2,3 ó 4 2 0,1,2,3 ó 4 3 0,1,2,3 ó 4 4 0,1 ó El punto que da el beneficio máximo es B. Así deben fabricarse 4 muebles clásicos y 3 funcionales, con un beneficio de = Sean: x = número de toneladas de aceite de almazara A y = número de toneladas de aceite de almazara B. z = 2000x y función objetivo. Las restricciones son: 2 x 7 2 y 7 x + y 6 y, por tanto, la región factible es: x 2y x 0,y 0 Evaluamos la función objetivo en cada uno de los vértices: A(2,7) Z = = B(2, 4) Z = = C(4,2) Z = = D(7,7) Z = = E(7,3' 5) Z = ,5 = 24500

15 El mínimo se alcanza en el vértice C, por tanto, la cantidad de aceite será de 4 toneladas de la almazara A y 2 toneladas de la almazara B. 11. Sean: x = número de coches del modelo A y = número de coches del modelo B z = 15000x y función objetivo Las restricciones: x 20 y 10 x y la región factible es: 15000x y x + 4y 12 x 0,y 0 Evaluamos la función objetivo en cada uno de los vértices: A, 7 7 z = / /7 = B 4,0 z = = ( ) C( 20,0) z = = D( 20,10) z = = E( 10,10) z = = El máximo se alcanza en el vértice D, por tanto, el número de coches será de 20 del modelo A y 10 del modelo B, con un importe de

16 12. Sean: x = número de mensajes y = número de llamadas z = 0,15x + 0,25y función objetivo Restricciones: x 0 y 0 y la región factible es, por tanto: x 3 y x + 3 5x + y 27 El máximo se alcanza en el vértice D, por tanto, el número de mensajes será de 4 y el número de llamadas de 7, con un importe de 2, Sean: x = número de Tm de rape y = número de Tm de merluza z = 15x + 10y función objetivo Restricciones: x 0 y 0 x + y 30 y la región factible: x 3y y 18

17 El número de Tm de rape será de 22,5 y el número de Tm de merluza de 7,5.

PROGRAMACIÓN LINEAL. x, y 0. y x 3 5x y 27. f x, y =15x 25y

PROGRAMACIÓN LINEAL. x, y 0. y x 3 5x y 27. f x, y =15x 25y PROGRAMACIÓN LINEAL Jun.08) Una compañía de telefonía móvil quiere celebrar una jornada de Consumo razonable y ofrece a sus clientes la siguiente oferta: 15 céntimos de euro por cada mensaje SMS y 25 céntimos

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios 1. En un taller de carpintería se fabrican mesas de cocina de formica y de madera. Las de formica se venden a 210 euros y las de madera a 280 euros. La maquinaria del taller condiciona la producción, por

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org 1. (PAU junio 2003 A1). Dada la siguiente ecuación matricial: 3 2 x 10 x 2 1 y 6 y 0 1 z 3 obtener de forma razonada los valores de x, y, z. 2. (PAU junio 2003 A2). Una compañía fabrica y vende dos modelos

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios 1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados. Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados. Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid Enunciados Isaac Musat Hervás 22 de noviembre de 2015 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA.

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. 001 002 003 004 005 006 007 008 009 010 011 012 Una tienda posee 3 tipos de conservas, A, B y C. El precio

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos

Más detalles

Programación lineal. 2.1 Problemas PAU

Programación lineal. 2.1 Problemas PAU 1 Programación lineal 2.1 Problemas PAU Junio 94: Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de ptas. y el modelo B a 2

Más detalles

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos)

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (2012) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B.

Más detalles

Autores: Onofre Monzó Del Olmo y María Teresa Navarro Moncho

Autores: Onofre Monzó Del Olmo y María Teresa Navarro Moncho Título: PROGRAMACIÓN LINEAL Nivel educativo: 2º BACHILLERATO Calculadora: CP-400 Autores: Onofre Monzó Del Olmo y María Teresa Navarro Moncho Proyecto: Sí Experimentado: Sí y con muy buenos resultados.

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

PROGRAMACIÓN LINEAL Junio 94. Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de pesetas y el modelo B en 2 millones. La oferta

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Buscando las soluciones óptimas (Una experienciacon alumnos de Estalmat-Canarias)

Buscando las soluciones óptimas (Una experienciacon alumnos de Estalmat-Canarias) Buscando las soluciones óptimas (Una experienciacon alumnos de Estalmat-Canarias) El objetivo de esta experiencia es iniciar de un modo práctico a estos alumnos en la interpretación gráfica y el manejo

Más detalles

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA...

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... 2 2.1. NATURALEZA DE LAS RESTRICCIONES... 2 2.2. DÓNDE ESTÁ Y CÓMO SE ENCUENTRA LA SOLUCIÓN...

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA

PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA 1 PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA 1. - Se han comprado 115 litros de vino por 69 euros. Cuál es el beneficio que se obtiene en cada litro de vino, si se vende a 1,5 euros el litro?. 2.

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

ACTIVIDADES TEMA 4. 1. Explica qué ocurriría con la demanda de bienes inferiores si la renta de los consumidores disminuyese.

ACTIVIDADES TEMA 4. 1. Explica qué ocurriría con la demanda de bienes inferiores si la renta de los consumidores disminuyese. LA DEMANDA 1. Explica qué ocurriría con la demanda de bienes inferiores si la renta de los consumidores disminuyese. 2. Dos bienes son complementarios si al aumentar el precio de uno de ellos la cantidad

Más detalles

-.PROGRAMACION LINEAL.- Problemas resueltos

-.PROGRAMACION LINEAL.- Problemas resueltos -.PROGRAMACION LINEAL.- Problemas resueltos EJEMPLO 1. Un expendio de carnes de la ciudad acostumbra preparar la carne para albondigón con una combinación de carne molida de res y carne molida de cerdo.

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V.

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. BLOQUE 1: ÁLGEBRA. JUN00 P4A: Por un helado, dos horchatas y cuatro batidos, nos cobraron en una heladería 1.700 pta un día. Otro día, por cuatro helados

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

Problemas resueltos de Programación Lineal

Problemas resueltos de Programación Lineal Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables. Conocer

Más detalles

2 3º) Representar gráficamente la función: y (Junio 1996)

2 3º) Representar gráficamente la función: y (Junio 1996) 4 1º) Dada la función y. Calcula a) Dominio y punto de corte. b) Regiones y simetría. c) Monotonía y etremos. d) Asíntotas y gráfica. e) Recorrido y continuidad. http://www.youtube.com/watch?v=iazce_pvedq

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal

Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal Ministerio de Educación Nuevo Bachillerato Ecuatoriano Programación lineal Con el fin de motivar a sus estudiantes, un profesor de Matemática decide proporcionarles dos paquetes de golosinas: uno con 2

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

MADRID / SEPTIEMBRE 2003 - LOGSE / ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS / EXAMEN COMPLETO

MADRID / SEPTIEMBRE 2003 - LOGSE / ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS / EXAMEN COMPLETO OPCIÓN A MADRID / SEPTIEMBRE 2003 - LOGSE / ECONOMÍA Y ORGANIZACIÓN DE 1. Dentro de las estrategias de diversificación se distingue entre diversificación horizontal y diversificación vertical. Indique

Más detalles

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1.

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1. IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio. ( puntos) Se desea invertir una cantidad de dinero menor o igual que 000 euros,

Más detalles

Proporcionalidad. 1. Calcula:

Proporcionalidad. 1. Calcula: Proporcionalidad 1. Calcula:. Resuelve los siguientes problemas: a. Tres kilos de naranjas cuestan,4. Cuánto cuestan dos kilos? b. Seis obreros descargan un camión en tres horas. Cuánto tardarán cuatro

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008 UNIVERSIDAD DE MURCIA REGIÓN DE MURCIA CONSEJERÍA DE EDUCACIÓN, CIENCIA E INVESTIGACIÓN UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre

Más detalles

4. Cuáles son los dos números?

4. Cuáles son los dos números? Problemas algebraicos 1 PROBLEMAS (SISTEMAS LINEALES) 1.1 PROBLEMAS (SISTEMAS NO LINEALES) 1.- La razón de dos números es tres quintos y si aumentamos el denominador una unidad y disminuimos el numerador

Más detalles

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de

Más detalles

PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15

PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15 PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15 1) (2,5 puntos)una empresa que fabrica motos y coches en dos factorías F1 y F2, ha recibido un pedido de 300 coches y 500 motos. En la factoría F1 se producen

Más detalles

Tipo de interés nominal (TIN)

Tipo de interés nominal (TIN) Tipo de interés nominal (TIN) Se llama Tipo de Interés Nominal (TIN), abreviado también como interés nominal, al porcentaje aplicado cuando se ejecuta el pago de intereses. Por ejemplo: Si se tiene un

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 2004 (ÁLGEBRA) + 3y

EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 2004 (ÁLGEBRA) + 3y EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 004 (ÁLGEBRA) 1.- Sea el sistema de inecuaciones x+ y 6 3x y 13 x + 3y 3 x 0 a) Dibuje el recinto cuyos puntos son las soluciones del sistema y obtenga sus vértices.

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 4 Pág. Página 60 FRIGORÍFICO 480 FACILIDADES DE PAGO EN TODOS LOS ARTÍCULOS: 25% A LA ENTREGA RESTO: EN 2 MENSUALIDADES SIN RECARGO En esta unidad vas a revisar algunas técnicas y razonamientos que se

Más detalles

EUSKALTEL HA CONSEGUIDO UNA CUOTA DE MERCADO DEL 40% EN CINCO AÑOS

EUSKALTEL HA CONSEGUIDO UNA CUOTA DE MERCADO DEL 40% EN CINCO AÑOS ELIJA UNA DE LAS DOS OPCIONES: OPCIÓN A: PREGUNTAS 1, 2, 3 y 4 OPCIÓN B: PREGUNTAS 3, 4, 5 y 6 PREGUNTA 1: Puntuación máxima 2,5 puntos. EUSKALTEL HA CONSEGUIDO UNA CUOTA DE MERCADO DEL 40% EN CINCO AÑOS

Más detalles

RESOLUCIÓN DE PROBLEMAS

RESOLUCIÓN DE PROBLEMAS RESOLUCIÓN DE PROBLEMAS La resolución de problemas mediante ecuaciones tiene una serie de dificultades que nos llevan a plantear un tema separado del resto. Las dificultades, llegado este punto en que

Más detalles

www.aulamatematica.com

www.aulamatematica.com www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada

Más detalles
Sitemap